Document Detail


Embryonic Stem Cells Improve Cardiac Function in Doxorubicin-Induced Cardiomyopathy Mediated through Multiple Mechanisms.
MedLine Citation:
PMID:  22449713     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Doxorubicin (DOX) is an effective antineoplastic agent used for the treatment of a variety of cancers. Unfortunately, its use is limited as this drug induces cardiotoxicity and heart failure as a side effect. There is no report which describes whether transplanted embryonic stem (ES)cells or their conditioned medium (CM) in DOX induced cardiomyopathy (DIC) can repair and regenerate myocardium. Therefore, we transplanted ES cells or CM in DIC to examine apoptosis, fibrosis, cytoplasmic vacuolization and myofibrillar loss and their associated Akt and ERK pathway. Moreover, we also determined activation of endogenous c-kit+(ve) cardiac stem cells (CSCs), levels of HGF and IGF-1, growth factors required for c-kit cell activation, and their differentiation into cardiac myocytes, which also contributes in cardiac regeneration and improved heart function. We generated DIC in C57Bl/6 mice (cumulative dose of DOX 12mg/kg body weight, i.p), and animals were treated with ES cells, CM or cell culture medium in controls. Two weeks post-DIC, ES cells or CM transplanted hearts showed a significant (p<0.05) decrease in cardiac apoptotic nuclei and their regulation with Akt and ERK pathway. Cardiac fibrosis observed in the ES cell or CM groups was significantly less compared with DOX and cell culture medium groups (p<0.05). Next, cytoplasmic vacuolization and myofibrillar loss was reduced (p<0.05) following treatment with ES cells or CM. Moreover, our data also demonstrated increased levels of c-kit+ve CSCs in ES cells or CM hearts and differentiated cardiac myocytes from these CSCs, suggesting endogenous cardiac regeneration. Importantly, the levels of HFG and IGF-1 were significantly increased in ES cells or CM transplanted hearts. In conclusion, we reported that transplanted ES cells or CM in DIC hearts significantly decreases various adverse pathological mechanisms as well as enhances cardiac regeneration that effectively contributes to improved heart function.
Authors:
Dinender K Singla; Aisha Ahmed; Reetu Singla; Binbin Yan
Related Documents :
1423523 - Total numbers of glomeruli and individual glomerular cell types in the normal rat kidney.
10360793 - Angiotensin ii-induced modulation of rat mesangial cell phenotype.
24841903 - Small-molecule screening of pc3 prostate cancer cells identifies tilorone dihydrochlori...
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-3-22
Journal Detail:
Title:  Cell transplantation     Volume:  -     ISSN:  1555-3892     ISO Abbreviation:  -     Publication Date:  2012 Mar 
Date Detail:
Created Date:  2012-3-27     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9208854     Medline TA:  Cell Transplant     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Increased determinism in brain electrical activity occurs in association with multiple sclerosis.
Next Document:  In vitro anthelmintic activity of crude extracts of selected medicinal plants against Haemonchus con...