Document Detail

Elevated transaminases as a predictor of coma in a patient with anorexia nervosa: a case report and review of the literature.
Jump to Full Text
MedLine Citation:
PMID:  20849624     Owner:  NLM     Status:  PubMed-not-MEDLINE    
INTRODUCTION: Liver injury is a frequent complication associated with anorexia nervosa, and steatosis of the liver is thought to be the major underlying pathology. However, acute hepatic failure with transaminase levels over 1000 IU/mL and deep coma are very rare complications and the mechanism of pathogenesis is largely unknown.
CASE PRESENTATION: A 37-year-old Japanese woman showed features of acute liver failure and hepatic coma which were not associated with hypoglycemia or hyper-ammonemia. Our patient's consciousness was significantly improved with the recovery of liver function and normalization of transaminase levels after administration of nutritional support.
CONCLUSIONS: Our case report demonstrates that transaminase levels had an inverse relationship with the consciousness of our patient, although the pathogenesis of coma remains largely unknown. This indicates that transaminase levels can be one of the key predictors of impending coma in patients with anorexia nervosa. Therefore, frequent monitoring of transaminase levels combined with rigorous treatment of the underlying nutritional deficiency and psychiatric disorder are necessary to prevent this severe complication.
Shuhei Yoshida; Masahiko Shimada; Miroslaw Kornek; Seong-Jun Kim; Katsunosuke Shimada; Detlef Schuppan
Related Documents :
8430154 - Sclerosing lipogranulomatosis: a case report of scrotal injection of automobile transmi...
19909684 - Iatrogenic venous pseudoaneurysm: case report and review of the literature.
24800224 - Review of clinical trials on effects of oral antioxidants on basic semen and other para...
25159854 - Scleredema-an uncommon cause of swelling in a child-a case report and review of the lit...
7654074 - Apolipoprotein e epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy.
19935394 - Homicide and suicide in yorkshire and the humber: 1975-1992 and 1993-2007.
Publication Detail:
Type:  Journal Article     Date:  2010-09-17
Journal Detail:
Title:  Journal of medical case reports     Volume:  4     ISSN:  1752-1947     ISO Abbreviation:  J Med Case Rep     Publication Date:  2010  
Date Detail:
Created Date:  2010-09-27     Completed Date:  2011-07-14     Revised Date:  2012-05-16    
Medline Journal Info:
Nlm Unique ID:  101293382     Medline TA:  J Med Case Rep     Country:  England    
Other Details:
Languages:  eng     Pagination:  307     Citation Subset:  -    
Department of Gastroenterology, Internal Medicine, TMG Asakadai Central General Hospital, Saitama 351-8551, Japan.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): J Med Case Reports
ISSN: 1752-1947
Publisher: BioMed Central
Article Information
Download PDF
Copyright ©2010 Yoshida et al; licensee BioMed Central Ltd.
Received Day: 4 Month: 2 Year: 2010
Accepted Day: 17 Month: 9 Year: 2010
collection publication date: Year: 2010
Electronic publication date: Day: 17 Month: 9 Year: 2010
Volume: 4First Page: 307 Last Page: 307
Publisher Id: 1752-1947-4-307
PubMed Id: 20849624
DOI: 10.1186/1752-1947-4-307

Elevated transaminases as a predictor of coma in a patient with anorexia nervosa: a case report and review of the literature
Shuhei Yoshida12 Email:
Masahiko Shimada13 Email:
Miroslaw Kornek2 Email:
Seong-Jun Kim2 Email:
Katsunosuke Shimada3 Email:
Detlef Schuppan2 Email:
1Department of Gastroenterology, Internal Medicine, TMG Asakadai Central General Hospital, Saitama 351-8551, Japan
2Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
3Medical Research Unit, Four Studies Ltd., Saitama 362-0073, Japan


Anorexia nervosa (AN) is a difficult-to-treat psychosomatic disease. Mild liver injury is regularly detected as a complication of AN [1-5]. Although severe acute liver injury has been previously described in a patient with AN, the underlying pathogenetic mechanisms remain largely unclear. Furthermore, only a few cases of AN with deep coma have been reported, mostly due to hypoglycemic coma [6-9].

Our case report describes a patient with AN who rapidly developed deep coma associated with acute liver failure, which was rapidly improved by initiation of total parenteral nutrition (TPN) and enteral feedings via a nasogastric (NG) tube.

Case presentation

Our patient was a 37-year-old Japanese woman with a 12-year history of AN. She had been hospitalized frequently in the gastrointestinal unit for nutritional treatment, but she continuously rejected hospitalization in a psychiatric unit probably due to her denial of the illness, despite her frequent, self-induced vomiting. She had been admitted to the hospital three times previously because of general fatigue combined with acute liver failure. At these admissions, her Glasgow coma scale (GCS) was in the normal range of 12 to 15. She was strongly recommended to consult a psychiatrist, but turned down the advice because of denial of her AN. Therefore, she was only prescribed ursodeoxycholic acid, multivitamin, and an enteral nutritional supplement. She had never previously received any psychotherapy. Furthermore, she had no history of alcohol abuse, anti-depressant drug intake, narcotic drug abuse or suicide attempt.

On the three prior admissions, physical examination had revealed severe emaciation, with a weight of 29.0 kg and a height of 1.52 m (body mass index (BMI) = 12.6). Her body temperature was below 36°C, her blood pressure was around 85/50 mm/Hg, with a regular heart rate of around 80 beats per minute.

At the time of her fourth admission, she was in a deep coma with a GCS score of 3. Arterial blood gas analysis revealed an arterial oxygen concentration of 97% in room air. The electrocardiogram showed sinus rhythm and a heart rate of 88 beats per minute. She had a weak, but positive papillary response without papillary mydriasis or miosis. Her body temperature was 35.6°C. There were no signs of respiratory or cardiac disease. Her blood sugar level was 68 at the time of admission, in the range of her usual level of 50 to 70. Computed tomography (CT), magnetic resonance imaging, and magnetic resonance angiography of the head showed no abnormality.

Aspartate aminotransferase was 3194 IU/L (reference range, 7 to 38 IU/L); alanine aminotransferase, 3540 IU/L (4 to 44 IU/L); alkaline phosphatase, 2388 IU/L (100 to 320 IU/L); γ-glutamyl transpeptidase, 342 IU/L (2 to 40 IU/L); NH3, 51 μg/dL (40 to 80 μg/dL). The ratio of branched-chain amino acids versus aromatic amino acids (BCAA/AAA) was 3.8 (2.5 to 3.5); albumin was 3.6 g/dL (3.8 to 5.3 g/dL); total bilirubin, 1.7 mg/dL (0.2 to 1.0 mg/dL); total cholesterol, 117 mg/dL (130 to 220 mg/dL); prothrombin activity, 49.8% (80 to 120%); hepaplastin test, 50.1% (70 to 130%); Type IV 7S-collagen, 4.9 ng/mL (< 6.0 ng/mL); HbA1c, 4.0% (4.3 to 5.8%); blood urea nitrogen, 23.6 mg/dL (8.0 to 20.0 mg/dL); creatinine, 0.69 mg/dL (0.3 to 0.8 mg/dL); white blood cells, 4070/mL (3800 to 9300/mL); hemoglobin, 12.1 g/dL (11.5 to 15.0 g/dL); hematocrit, 34.5% (33.5 to 44.5%); Fe, 123 μg/dL (48 to 154 μg/dL); Cu, 78 μg/dL (66 to 130 μg/dL); Zn, 92 μg/dL (59 to 135 μg/dL); platelet count, 12.7 × 104/μL (13 to 37 × 104/μL); and total protein, 5.0 g/dL (6.5 to 8.2 g/dL). Anti-nuclear and anti-mitochondrial antibodies were negative. Serologic tests for hepatotropic viruses (hepatitis A, B, and C viruses, cytomegalovirus, and Epstein-Barr virus) and the urinary toxicology screen (alcohol, cannabis, cocaine, paracetamol, amphetamines, benzodiazepines, methadone, opiates) were negative. Ultrasound showed a mild fatty liver, but the CT score (Hounsfield units) of the liver was slightly higher than that of the spleen (data not shown).

The NH3 and BCAA/AAA levels remained normal during our patient's coma and afterward, and the blood sugar remained close to her usual level (Table 1). TPN and enteral tube feeding were administered on the day of admission. Her consciousness gradually normalized at day 10, which was paralleled with an improvement of her severe liver dysfunction (Table 1). Comparing the broad spectrum of laboratory clinical parameters with her GCS level, only serum transaminases showed a strong inverse correlation. Of note, blood sugar, plasma NH3, and the BCAA/AAA ratio were not correlated with her consciousness. A liver biopsy was performed after the recovery of her liver function at day 14. Ballooning of hepatocytes, necroinflammatory changes, and macrovesicular steatosis were observed in hematoxylin-eosin-stained sections (Figure 1), but both iron and copper staining were negative (data not shown). No etiology of the deep coma, other than acute malnutrition-induced liver injury, was detected.


To the best of our knowledge, this is the first report of a patient with AN presenting with deep coma associated with acute hepatitis/liver failure. AN is an eating disorder, affecting mainly young women with a distorted body image and a overwhelming desire to be slim. Minor degrees of liver injury have been reported in up to 40% of patients with AN [5]. Although the mechanism of liver injury in AN has been thought to be due to protein-calorie malnutrition of the Kwashiorkor-type with fatty changes, this has not been rigorously demonstrated, and the precise mechanism is still unknown [10]. Starvation-induced autophagy of hepatocytes [11] and enhanced starvation-induced hepatocyte oxidative stress may be a leading mechanism resulting in liver dysfunction in AN [12]. In the latter report, the CT density of the liver was higher than that of the spleen in a patient with AN and elevated transaminases, whereas liver steatosis was diagnosed in ultrasound imaging, as was found in our patient. In addition, these authors detected increased markers of oxidative stress in the liver biopsy. Again, this is compatible with our finding of numerous hepatocytes with signs of ballooning (Figure 1), which is a hallmark of oxidative stress and of hepatocyte apoptosis and autophagy in alcoholic and non-alcoholic steatosis [13]. These reports, in conjunction with our findings, strongly indicate that starvation in AN patients leads to enhanced oxidative stress, hepatocyte apoptosis, and autophagy that trigger acute liver inflammation and moderate functional liver failure. To date, only rare cases describe coma in AN patients, most of them due to hypoglycemia [6-9]. Hypoglycemia could be ruled out in our case. Interestingly, an inverse relationship was noted between the GCS and the transaminase levels (Table 1). This further supports the previously mentioned sequence in which acute starvation-induced liver injury apparently promoted the development of hepatocyte necrosis/autophagy, liver dysfunction, and deep coma in a patient with AN. However, this hypothesis does not necessarily apply to all patients with severe hepatitis, because a case of a patient with AN with clear consciousness despite highly elevated transaminase was reported [14]. The present case is different from other cases of acute or chronic or liver failure, in that the circulating type IV 7S-collagen, the BCAA/AAA ratio, and the NH3 level remained normal during several days of deep coma. Recently, in two patients with AN and normal transaminase levels, iatrogenic hyperammonia induced by high-protein dietary supplements was reported [15]. In our case, coma gradually disappeared with improvement of nutritional status and liver injury, but was unrelated to the NH3 level, usually a strong predictor of encephalopathy in acute or cirrhotic liver failure [15]. The clinical data clearly indicated that the transaminase levels had a strong inverse correlation with our patient's consciousness. These results strongly suggest that the pathogenesis of coma in classic hepatic encephalopathy differs from that in our patient with AN.


Our case report of a patient with AN and high transaminase levels in a deep coma indicates that severe starvation-induced hepatocyte autophagy and apoptosis may lead to a diagnosis of acute liver failure. However, in contrast to hepatic encephalopathy, neither blood ammonia levels nor the ratio of BCAA/AAA was abnormal. We hypothesize that patients with AN and mild liver dysfunction may develop lower degrees of encephalopathy that may escape routine detection. Therefore, it is necessary to monitor transaminase levels regularly in patients with AN.

It is important to note that the severe hepatitis and encephalopathy observed in our patient were completely reversed after institution of appropriate parenteral and enteral nutrition. We hope that psychiatric therapy will remain the mainstay of treating patients with AN, preventing severe malnutrition with subsequent liver dysfunction, as was diagnosed in our patient.


ALB: albumin; AN: anorexia nervosa; AST: asparate aminotransferase; ALT: alanine aminotransferase; BCAA/AAA: branch-chain amino acid/aromatic amino acid; BS: blood sugar; GCS: Glasgow Coma Scale; NH3: ammonia; PTA: prothrombin activity; T-BIL: total bilirubin.

Competing interests

The authors declare that they have no competing interests.


Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Authors' contributions

SY and MS contributed equally to the management of the patient and the researching for and writing of this manuscript. SY mainly wrote the manuscript. MK, SK, and KS commented on drafts and did literature searches. DS advised and wrote and revised the manuscript. All authors read and approved the final manuscript.

Sakada M,Tanaka A,Ohta D,Takayanagi M,Kodama T,Suzuki K,Inoue K,Fujita Y,Maruyama M,Severe steatosis resulted from anorexia nervosa leading to fatal hepatic failureJ GastroenterolYear: 20064171471510.1007/s00535-006-1845-716933013
Di Pascoli L,Lion A,Milazzo D,Caregaro L,Acute liver damage in anorexia nervosaInt J Eat DisordYear: 20043611411710.1002/eat.2000215185281
Furuta S,Ozawa Y,Maejima K,Tashiro H,Kitahora T,Hasegawa K,Kuroda S,Ikuta N,Anorexia nervosa with severe liver dysfunction and subsequent critical complicationsIntern MedYear: 19993857557910.2169/internalmedicine.38.57510435364
De Caprio C,Alfano A,Senatore I,Zarrella L,Pasanisi F,Contaldo F,Severe acute liver damage in anorexia nervosa: two case reportsNutritionYear: 20062257257510.1016/j.nut.2006.01.00316600819
Mine T,Ogata E,Kumano H,Kuboki T,Suematsu H,Liver dysfunction in anorexia nervosaReports of the anorexia nervosa study group sponsored by The Japanese Ministry of Health and WelfareYear: 1991129131 (in Japanese).
Yamada Y,Fushimi H,Inoue T,Nishinaka K,Kameyama M,Anorexia nervosa with recurrent hypoglycemic coma and cerebral hemorrhageIntern MedYear: 19963556056310.2169/internalmedicine.35.5608842763
Nakai Y,Koh T,Perception of hunger to insulin-induced hypoglycemia in anorexia nervosaInt J Eat DisordYear: 20012935435710.1002/eat.103011262517
Bando N,Watanabe K,Tomotake M,Taniguchi T,Ohmori T,Central pontine myelinolysis associated with a hypoglycemic coma in anorexia nervosaGen Hosp PsychiatryYear: 20052737237410.1016/j.genhosppsych.2005.03.00416168799
Rich LM,Caine MR,Findling JW,Shaker JL,Hypoglycemic coma in anorexia nervosa: case report and review of the literatureArch Intern MedYear: 199015089489510.1001/archinte.150.4.8942183736
Sharp CW,Freeman CP,The medical complications of anorexia nervosaBr J PsychiatryYear: 199316245246210.1192/bjp.162.4.4528481735
Rautou PE,Cazals-Hatem D,Moreau R,Francoz C,Feldmann G,Lebrec D,Ogier-Denis E,Bedossa P,Valla D,Durand F,Acute liver cell damage in patients with anorexia nervosa: a possible role of starvation-induced hepatocyte autophagyGastroenterologyYear: 200813584084810.1053/j.gastro.2008.05.05518644371
Tajiri K,Shimizu Y,Tsuneyama K,Sugiyama T,A case report of oxidative stress in a patient with anorexia nervosaInt J Eat DisordYear: 20063961661810.1002/eat.2032616927384
Tiniakos DG,Liver biopsy in alcoholic and non-alcoholic steatohepatitis patientsGastroenterol Clin BiolYear: 20093393093910.1016/j.gcb.2009.05.00919646834
Downan J,Arulraj R,Chesner I,Recurrent acute hepatic dysfunction in severe anorexia nervosaInt J Eat DisordYear: 2010 in press .
Welsh E,Kucera J,Perloff MD,Iatrogenic hyperammonemia after anorexiaArch Intern MedYear: 201017048648810.1001/archinternmed.2009.54920212188


[Figure ID: F1]
Figure 1 

Hematoxylin-eosin staining of liver biopsy specimen of the patient with anorexia nervosa. Diffuse macrovesicular steatosis as well as numerous ballooning hepatocytes. Necroinflammatory changes representing acidophilic bodies and spotty necrosis (arrowheads).

[TableWrap ID: T1] Table 1 

Laboratory data at admission and during hospitalization.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7 Day 10 Day 14 Day 19 Day 25 Day 32
AST (IU/L) (7-38) 3194 4880 2556 1614 1567 1021 807 455 138 86 45
ALT (IU/L) (4-44) 3540 5408 4056 3672 2440 1958 1492 859 434 137 70
ALP (IU/L) (100-320) 2388 3282 2872 2732 1948 1649 1080 741 651 524 482
T-BIL (mg/dL) (0.2-1.0) 1.7 2.3 2.7 2.2 2.5 2.1 2.0 1.4 1.5 1.2 0.9
ALB (g/dL) (3.8-5.3) 3.1 3.6 3.3 3.1 3.4 3.3 3.3 3.5 3.2 2.8 2.9
NH3 (μg/dL) (40-80) 51 28 69 33 36 73 88 90 77 80 80
PTA (%) (80-120) 49.8 44.6 48.3 54.5 67.9 79.4
BS (mg/dL) (70-160) 68 98 89 102 94 87 85 68 66 58 62
BCAA/AAA (2.5-4.5) 3.8 3.6 3.3 4.0 3.1 3.2
GCS (15) 3 3 4 5 7 10 15 15 15 15 15

Article Categories:
  • Case Report

Previous Document:  Clinical outcomes of stereotactic body radiotherapy for stage I non-small cell lung cancer using dif...
Next Document:  A targeted decision aid for the elderly to decide whether to undergo colorectal cancer screening: de...