Document Detail

Effluent markers related to epithelial mesenchymal transition with adjusted values for effluent cancer antigen 125 in peritoneal dialysis patients.
Jump to Full Text
MedLine Citation:
PMID:  21755056     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
Objectives. Epithelial mesenchymal transition (EMT) is important for peritoneal deterioration. We evaluated the association between peritoneal solute transport rate (PSTR) and effluent markers related to EMT with adjusted values for effluent cancer antigen 125 (CA125). Methods. One hundred five incident peritoneal dialysis (PD) patients on PD for 25 (12-68) months with biocompatible solutions were included in the study. Fast peritoneal equilibration test was used to evaluate PSTR. Effluent hepatocyte growth factor (HGF), bone morphogenic protein-7 (BMP-7), vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), and CA125 at 4 h were measured. Results. Patients with dialysate/plasma creatinine ≧0.82 showed significantly higher effluent HGF (240 versus 133 pg/mL, P < .001), VEGF, IL-6, and IL6/CA125 levels than the others but no significant differences in effluent HGF/CA125, BMP-7, and BMP7/CA125 were observed. Conclusion. Increase in the effluent HGF levels as a compensatory mechanism is a marker of peritoneal deterioration, but controversy remains regarding adjusted value for CA125.
Authors:
Sonoo Mizuiri; Hiromichi Hemmi; Michitsune Arita; Reibin Tai; Yoshinari Hattori; Atsuhiko Muto; Yasunori Suzuki; Yasushi Ohashi; Ken Sakai; Atsushi Aikawa
Related Documents :
7852936 - Proteinuria in patients with sleep apnea.
3890526 - A renal biopsy study of lupus nephropathy in the united states and korea.
21560196 - Epidemiologic characteristics of patients with inflammatory bowel disease undergoing co...
21207506 - Clinical observational gait analysis to evaluate improvement of balance during gait wit...
23237056 - Chronic leg ulcers in adult patients with rheumatological diseases - a 7-year retrospec...
22266436 - Clinical spectrum associated with some structural cerebellar abnormalities.
Publication Detail:
Type:  Journal Article     Date:  2011-07-06
Journal Detail:
Title:  International journal of nephrology     Volume:  2011     ISSN:  2090-2158     ISO Abbreviation:  Int J Nephrol     Publication Date:  2011  
Date Detail:
Created Date:  2011-07-14     Completed Date:  2011-07-14     Revised Date:  2011-08-01    
Medline Journal Info:
Nlm Unique ID:  101546753     Medline TA:  Int J Nephrol     Country:  England    
Other Details:
Languages:  eng     Pagination:  261040     Citation Subset:  -    
Affiliation:
Department of Nephrology, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ohta-ku, Tokyo 143-8541, Japan.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Int J Nephrol
Journal ID (publisher-id): IJN
ISSN: 2090-2158
Publisher: SAGE-Hindawi Access to Research
Article Information
Download PDF
Copyright © 2011 Sonoo Mizuiri et al.
open-access:
Received Day: 27 Month: 1 Year: 2011
Accepted Day: 26 Month: 4 Year: 2011
collection publication date: Year: 2011
Electronic publication date: Day: 6 Month: 7 Year: 2011
Volume: 2011E-location ID: 261040
ID: 3132654
PubMed Id: 21755056
DOI: 10.4061/2011/261040

Effluent Markers Related to Epithelial Mesenchymal Transition with Adjusted Values for Effluent Cancer Antigen 125 in Peritoneal Dialysis Patients
Sonoo Mizuiri1*
Hiromichi Hemmi2
Michitsune Arita2
Reibin Tai1
Yoshinari Hattori1
Atsuhiko Muto1
Yasunori Suzuki1
Yasushi Ohashi1
Ken Sakai1
Atsushi Aikawa1
1Department of Nephrology, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ohta-ku, Tokyo 143-8541, Japan
2Department of Molecular Biology, Toho University School of Medicine, Tokyo 143-8541, Japan
Correspondence: *Sonoo Mizuiri: sm210@med.toho-u.ac.jp
[other] Academic Editor: Hulya Taskapan

1. Introduction

Resident fibroblasts and infiltrating inflammatory cells are considered to be the main entities responsible for structural and functional alterations in the peritoneum, but recent findings have demonstrated that new fibroblastic cells can arise from the local conversion of mesothelial cells by epithelial-to-mesenchymal transition (EMT) during the inflammatory and repair responses that are induced by peritoneal dialysis (PD) [1]. EMT of peritoneal mesothelial cells is associated with angiogenic stimuli and altered transport through common initiating growth factors and inflammatory cytokines [2, 3]. Hepatocyte growth factor (HGF) and bone morphogenic protein-7 (BMP-7) ameliorate high-glucose-induced EMT of the peritoneal mesothelium [4, 5].

As it is not possible to perform repeated peritoneal biopsies, the search for effluent markers of peritoneal damage and EMT is clinically important. However, the clinical significance of HGF and BMP-7 effluent levels with regard to these conditions remains unclear. It has also been reported that dialysate growth factor levels should be measured relative to the mesothelial cell mass, for example, relative to the level of cancer antigen 125 (CA125) [6, 7]. We evaluated the association between peritoneal membrane transport rate and the expression of effluent markers related to epithelial mesenchymal transition (HGF, BMP-7, vascular endothelial growth factor (VEGF), and interleukin-6 (IL-6)) with adjusting the levels of these markers relative to the effluent CA125 concentration in patients on PD.


2. Subjects and Methods
2.1. Patient Selection

From December 2007 to December 2010, all incident PD patients, aged between 20 and 69, who were being treated at our unit were enrolled in the study (n = 116). The patients had been on continuous ambulatory peritoneal dialysis (CAPD) with dual-chamber bags, neutral-pH, and low-GDP glucose-based solutions for more than 6 months and had been clinically stable and peritonitis-free for at least 3 months before the study. Patients on automated peritoneal dialysis (APD) and patients who had received glucose polymer-based peritoneal dialysis solution were also included the study, but they were switched to CAPD with dual-chamber bags, neutral-pH, and low-GDP glucose-based solutions the day before the study. None of the subjects were on PD with conventional acidic PD solutions. The exclusion criteria included severe systemic disease, malignancy, and patients with elevated serum CRP levels. All eligible 105 incident PD subjects were included for this study, and 11 patients were excluded. The ethics committee of Toho University School of Medicine approved this study, and informed consent was obtained from all subjects.

2.2. Study of Peritoneal Transport Kinetics and Effluent Markers

The study was performed cross-sectionally, and on the night before the study, all patients were asked to undergo PD using 2.5% glucose PD solution with a 10 h dwell time. After the dialysis fluid had drained completely, a standard fast peritoneal equilibration test (fast PET) was performed. The drainage volume and ultrafiltration volume were recorded at 4 h.Dialysate to plasma creatinine values (D/P creatinine) and effluent glucose were measured at 4 h, and effluent samples were taken at 4 h and immediately stored at −70°C until they were used to measure HGF, BMP-7,VEGF, IL-6, and CA125.

2.3. Measurement of Effluent Markers

The concentrations of CA125 and IL-6 in the effluent were measured using a chemiluminescent enzyme immunoassay with appropriate kits (Fujirebio, Tokyo, Japan) [8, 9]. The concentrations of VEGF, HGF, and BMP-7 were measured with commercially available immunoenzymometric assays according to the manufacturer's instructions (VEGF and HGF were measured with ELISA kits from Quantikine R & D Systems, Minneapolis, Minn, USA and BMP-7 was measured with an ELISA kit from RayBiotech Inc., Peterborough, UK).

2.4. Statistical Analysis

The data were not in the normal distribution, and nonparametric tests were performed in all analyses. The data are expressed as median values and 25% to 75% interquartile ranges (IQR). Differences between two groups were assessed by the Mann-Whitney U test. Differences considered to be associated with diabetes were assessed using the chi-square test. A P value less than  .05 denoted the presence of significant difference.


3. Results

The clinical characteristics and the results of the fast PET in the subjects are shown in Table 1. The median (IQR) age was 55 (44–64) years old, and the median (IQR) PD duration was 25 (12–68) months for all patients. The patients were subdivided into two groups according to their peritoneal transport characteristics to allow statistical evaluations to be performed: the patients with high peritoneal transport rate (D/P creatinine ≧ 0.82) and the “others” (D/P creatinine < 0.82). There were significant differences between the two groups with regard to the duration of PD (P < .05) and serum albumin levels (P < .001). Furthermore, prevalence of diabetes was higher in the patients with high transport rate than the others, although the difference was not statistically significant (P = .08).

Effluent markers and effluent markers-to-effluent CA125 ratio in patients with high transport rate and others are shown in Table 2. Significantly higher effluent HGF, VEGF, and IL-6 levels were found in the patients with high transport rate compared to the others. No differences were observed in the effluent BMP-7 or CA125 levels between the two groups. With regard to effluent markers-to-effluent CA125 ratio, there was a significant difference only in effluent IL-6/CA125 levels between two groups. No significant differences were observed in effluent HGF/CA125, BMP-7/CA125, and VEGF/CA125 levels between two groups.


4. Discussion

It was reported that solute transfer increases and ultrafiltration declines with time during peritoneal dialysis treatment [10] and that a high transport status is observed after 6 years dialysis treatment and subsequently develops into encapsulating peritoneal sclerosis [1113]. In contrast with previous reports [1013], the patients with high transport rate in our study had not undergone PD treatment for a longer period than the other group. Differences between the PD solutions might partly explain the different results since all our patients were treated with new biocompatible solutions whereas the patients in previous reports were treated with conventional nonbiocompatible solutions. However, the patients with high peritoneal transport rate in our study showed a higher prevalence of diabetes and hypoalbuminemia, as reported previously [1416].

EMT of mesothelial cells is associated with high peritoneal transport [17]. There is emerging evidence that the mesenchymal conversion of mesothelial cells is an important mechanism for the failure of peritoneal membrane function [1820]. High levels of glucose, glucose degradation products, a low-PD solution pH, inflammation, and angiotensin II are responsible for the production of transforming growth factor β (TGF-β) and VEGF, which induce EMT, by mesothelial cells [1]. TGF-β is a key regulator of EMT [1, 20]; however, the measurement of TGF-β is not easy because of its low concentration in dialysis effluent fluids [6]. In addition, it is not clear whether measuring the amount of TGF-β protein in peritoneal fluid, in which it is mostly found in an inactive state, that is, bound to a latency-associated protein, is reflective of the tissue levels of active TGF-β [6, 21] and a previous study found no differences in TGF-β at any time in a comparison of patients treated with low-GDP solution and patients treated with high-GDP solutions [6]. VEGF was found to be locally produced in the peritoneal tissue of patients undergoing peritoneal dialysis, and effluent VEGF was found to be correlated with solute transport but not the TGF-β1 level [22, 23].

IL-6 is a cytokine involved in the acute-phase inflammatory reaction, and dialysate IL-6 levels and VEGF concentrations are associated with a high peritoneal solute transport rate [24]. It has also been reported that HGF and BMP-7 ameliorate high-glucose-induced EMT in the peritoneal mesothelium [4]. Furthermore, it was reported that measuring the dialysate VEGF, level relative to the effluent CA125 level revealed a significant association with EMT, whereas unadjusted levels of the growth factor did not [6]. Thus, we studied the relationship between peritoneal transport characteristics and effluent HGF, BMP-7, VEGF and IL-6 levels and their values relative to the effluent CA125 concentration, focusing on EMT in patients being treated with PD using new, biocompatible PD solutions.

Consistent with previous reports, VEGF and IL-6 levels were significantly different between patients with high transport rate and others [24]; however, effluent HGF levels showed bigger difference in these two groups in our study. We considered that using a low-GDP, neutral-pH, dual-chamber bag PD solution also causes EMT since high glucose itself induces EMT in cultured human peritoneal mesothelial cells [4]. According to previous studies, it is conceivable that the mesothelial cells of patients with high transport rate undergo EMT and display decreased production of HGF and BMP-7. However, in our study, the high transport rate group showed increased effluent HGF concentrations. HGF is a heterodimeric molecule composed of a 69 kDa alpha subunit and a 34 kDa beta subunit (Entrez Gene ID: 3082). Its peritoneal permeability is expected to be poor, and so the HGF protein detected in the effluent may be produced locally. Yu et al. demonstrated that human peritoneal mesothelial cells constitutively synthesized HGF [4]. In a previous study, high-glucose-induced EMT in the peritoneal mesothelium was reversed by HGF treatment, suggesting a link between decreased HGF expression and EMT in human peritoneal mesothelial cells [4]. HGF also prevented peritoneal fibrosis in a rat model of EPS [25]. However, Rampino et al. showed that treatment with high-dosage HGF (50 pg/mL) and the HGF released during peritonitis in humans may facilitate repair through mesothelial cell growth, but may also contribute to peritoneal fibrosis including cell detachment, fibroblast-like phenotype changes, and collagen synthesis [26]. These findings suggest that an antifibrotic effect of HGF may be dosage dependent with variable therapeutic dosages that depend on experimental conditions and types of animal model. We considered that unexpected increase in the HGF levels has been proposed as a compensatory mechanism in patients with high peritoneal transport rate. High effluent HGF may be a marker of peritoneal deterioration since high HGF levels coexist with high peritoneal transport rate.

In contrast with Szeto et al.'s report [27], no difference in BMP-7 was demonstrated by the difference in D/P creatinine in our study. Their results showed that the PD effluent BMP-7 level displayed a significant correlation with the change in the D/P creatinine level but was not significantly correlated with the D/P creatinine level at 4 or 52 weeks in new PD patients. However, we only studied the D/P creatinine level in incident CAPD patients at one time point, which may account for our different results. We consider that it is difficult to interpret EMT using measurements of effluent BMP-7 concentrations taken at one time point alone.

The number or mass of mesothelial cells could affect the levels of intraperitoneal growth factors in CAPD patients. It was reported that the CA125 levels in peritoneal effluent were higher in patients treated with low-GDP solution than in those treated with conventional solution [28]. Do et al. observed differences in dialysate-VEGF/CA125 levels between the low- and high-GDP groups during the initial 12 months, but did not observe any difference in the unadjusted VEGF concentration [6]. From our data, patients with high transport rate displayed higher HGF, VEGF, and IL-6 levels. While, effluent HGF/CA125, and VEGF/CA125 levels were not significantly different between patients with high transport rate and others. Furthermore, IL-6/CA125 effluent level did not show a stronger relation with D/P creatinine than unadjusted IL-6. Breborowicz reported that CA 125 does not a good index of the number of mesothelial cells or their functional properties, because the amount of CA125 released from mesothelial cells is not only depend on the number of cells, but also on their properties, age of cell donor, and environmental factors [29]. We consider that the effluent concentrations of growth factors should be measured relative to mesothelial mass integrity and that the CA125 effluent level may not be a suitable surrogate marker for this purpose.

Our study has certain limitation. The small number of the patients in the high transport group and shorter duration of the PD in this group may affect the results. In conclusion, increase in the effluent HGF levels as a compensatory mechanism is a marker of peritoneal deterioration, but controversy remains regarding the adjustment of markers for CA125.


Conflict of Interests

The authors declare that there is no conflict of interests.


References
1. Aroeira LS,Aguilera A,Sánchez-Tomero JA,et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventionsJournal of the American Society of NephrologyYear: 20071872004201317568021
2. Yáñez-Mó M,Lara-Pezzi E,Selgas R,et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cellsThe New England Journal of MedicineYear: 2003348540341312556543
3. Devuyst O,Margetts PJ,Topley N. The pathophysiology of the peritoneal membraneJournal of the American Society of NephrologyYear: 20102171077108520448020
4. Yu MA,Shin KS,Kim JH,et al. HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesotheliumJournal of the American Society of NephrologyYear: 200920356758119193779
5. Loureiro J,Schilte M,Aguilera A,et al. BMP-7 blocks mesenchymal conversion of mesothelial cells and prevents peritoneal damage induced by dialysis fluid exposureNephrology Dialysis TransplantationYear: 201025410981108
6. Do JY,Kim YL,Park JW,et al. The association between the vascular endothelial growth factor-to-cancer antigen 125 ratio in peritoneal dialysis effluent and the epithelial-to-mesenchymal transition in continuous ambulatory peritoneal dialysisPeritoneal Dialysis InternationalYear: 2008283, supplementS101S10618552237
7. Krediet RT. Dialysate cancer antigen 125 concentration as marker of peritoneal membrane status in patients treated with chronic peritoneal dialysisPeritoneal Dialysis InternationalYear: 200121656056711783764
8. Nishizono I,Iida S,Suzuki N,et al. Rapid and sensitive chemiluminescent enzyme immunoassay for measuring tumor markersClinical ChemistryYear: 1991379163916441716538
9. Kenemans P,Van Kamp GJ,Oehr P,Verstraeten RA. Heterologous double determinant immunoradiometric assay CA 125 II. Reliable second-generation immunoassay for determining CA 125 in serumClinical ChemistryYear: 19933912250925138252723
10. Davies SJ,Bryan J,Phillips L,Russell GI. Longitudinal changes in peritoneal kinetics: the effects of peritoneal dialysis and peritonitisNephrology Dialysis TransplantationYear: 1996113498506
11. Yamamoto R,Nakayama M,Hasegawa T,et al. High-transport membrane is a risk factor for encapsulating peritoneal sclerosis developing after long-term continuous ambulatory peritoneal dialysis treatmentAdvances in peritoneal dialysis. Conference on Peritoneal DialysisYear: 20021813113412402604
12. Nakayama M,Yamamoto H,Ikeda M,et al. Risk factors and preventive measures for encapsulating peritoneal sclerosis–Jikei experience 2002Advances in Peritoneal DialysisYear: 20021814414812402607
13. Kawaguchi Y,Saito A,Kawanishi H,et al. Recommendations on the management of encapsulating peritoneal sclerosis in Japan, 2005: diagnosis, predictive markers, treatment, and preventive measuresPeritoneal Dialysis InternationalYear: 2005254, supplementS83S9516300277
14. Churchill DN,Thorpe KE,Nolph KD,Keshaviah PR,Oreopoulos DG,Pagé D. Increased peritoneal membrane transport is associated with decreased patient and technique survival for continuous peritoneal dialysis patientsJournal of the American Society of NephrologyYear: 199897128512929644640
15. Nakamoto H,Suzuki H,Imai H,et al. Hypoproteinemia in patients with diabetes undergoing continuous ambulatory peritoneal dialysis is attributable to high permeability of peritoneal membranePeritoneal Dialysis InternationalYear: 200323supplement 2S72S7817986564
16. Kim YL. Update on mechanisms of ultrafiltration failurePeritoneal Dialysis InternationalYear: 2009292, supplementS123S12719270200
17. Del Peso G,Jiménez-Heffernan JA,Bajo MA,et al. Epithelial-to-mesenchymal transition of mesothelial cells is an early event during peritoneal dialysis and is associated with high peritoneal transportKidney InternationalYear: 200873108, supplementS26S3318379544
18. Aroeira LS,Aguilera A,Selgas R,et al. Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factorAmerican Journal of Kidney DiseasesYear: 200546593894816253736
19. Aroeira LS,Lara-Pezzi E,Loureiro J,et al. Cyclooxygenase-2 mediates dialysate-Lnduced alterations of the peritoneal membraneJournal of the American Society of NephrologyYear: 200920358259219158357
20. Margetts PJ,Bonniaud P,Liu L,et al. Transient overexpression of TGF-β1 induces epithelial mesenchymal transition in the rodent peritoneumJournal of the American Society of NephrologyYear: 200516242543615590759
21. Margetts PJ,Bonniaud P. Basic mechanisms and clinical implications of peritoneal fibrosisPeritoneal Dialysis InternationalYear: 200323653054114703193
22. Zweers MM,De Waart DR,Smit W,Struijk DG,Krediet RT. Growth factors VEGF and TGF-β1 in peritoneal dialysisJournal of Laboratory and Clinical MedicineYear: 1999134212413210444025
23. Zweers MM,Struijk DG,Smit W,Krediet RT. Vascular endothelial growth factor in peritoneal dialysis: a longitudinal follow-upJournal of Laboratory and Clinical MedicineYear: 2001137212513211174469
24. Pecoits-Filho R,Araújo MRT,Lindholm B,et al. Plasma and dialysate IL-6 and VEGF concentrations are associated with high peritoneal solute transport rateNephrology Dialysis TransplantationYear: 200217814801486
25. Matsuoka T,Maeda Y,Matsuo K,et al. Hepatocyte growth factor prevents peritoneal fibrosis in an animal model of encapsulating peritoneal sclerosisJournal of NephrologyYear: 2008211647318264938
26. Rampino T,Cancarini G,Gregorini M,et al. Hepatocyte growth factor/scatter factor released during peritonitis is active on mesothelial cellsAmerican Journal of PathologyYear: 200115941275128511583955
27. Szeto CC,Chow KM,Kwan BCH,et al. The relationship between bone morphogenic protein-7 and peritoneal transport characteristicsNephrology Dialysis TransplantationYear: 200823929892994
28. Williams JD,Topley N,Craig KJ,et al. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membraneKidney InternationalYear: 200466140841815200450
29. Breborowicz A,Breborowicz M,Pyda M,Połubinska A,Oreopoulos D. Limitations of CA125 as an index of peritoneal mesothelial cell mass: an in vitro studyNephronYear: 20051002c46c5115818058

Article Categories:
  • Clinical Study


Previous Document:  (Pro)renin Receptor in Kidney Development and Disease.
Next Document:  Hypertension, chronic kidney disease, and renal pathology in a child with hermansky-pudlak syndrome.