Document Detail


Effects of site disorder, off-stoichiometry and epitaxial strain on the optical properties of magnetoelectric gallium ferrite.
MedLine Citation:
PMID:  23032362     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
We present a combined experimental-theoretical study demonstrating the role of site disorder, off-stoichiometry and strain on the optical properties of magnetoelectric gallium ferrite. Optical properties (bandgap, refractive indices and dielectric constants) were experimentally obtained by performing ellipsometric studies over the energy range 0.8-4.2 eV on pulsed laser deposited epitaxial thin films of stoichiometric gallium ferrite with b-axis orientation and the data were compared with theoretical results. Calculations on the ground state structure show that the optical activity in GaFeO(3) arises primarily from O 2p-Fe 3d transitions. Further, inclusion of site disorder and epitaxial strain in the ground state structure significantly improves the agreement between the theory and the room temperature experimental data substantiating the presence of site disorder in the experimentally derived strained GaFeO(3) films at room temperature. We attribute the modification of the ground state optical behavior upon inclusion of site disorder to the corresponding changes in the electronic band structure, especially in Fe 3d states leading to a lowered bandgap of the material.
Authors:
Amritendu Roy; Somdutta Mukherjee; Surajit Sarkar; Sushil Auluck; Rajendra Prasad; Rajeev Gupta; Ashish Garg
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-10-03
Journal Detail:
Title:  Journal of physics. Condensed matter : an Institute of Physics journal     Volume:  24     ISSN:  1361-648X     ISO Abbreviation:  J Phys Condens Matter     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-10-3     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101165248     Medline TA:  J Phys Condens Matter     Country:  -    
Other Details:
Languages:  ENG     Pagination:  435501     Citation Subset:  -    
Affiliation:
Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur-208016, India.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  African-American men with low-grade prostate cancer have higher tumor burdens: Results from the Duke...
Next Document:  Electronic symptom reporting between patient and provider for improved health care service quality: ...