Document Detail

Effects of quantum statistics of phonons on the thermal conductivity of silicon and germanium nanoribbons.
Jump to Full Text
MedLine Citation:
PMID:  23281873     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
: We present molecular dynamics simulation of phonon thermal conductivity of semiconductor nanoribbons with an account for phonon quantum statistics. In our semiquantum molecular dynamics simulation, dynamics of the system is described with the use of classical Newtonian equations of motion where the effect of phonon quantum statistics is introduced through random Langevin-like forces with a specific power spectral density (color noise). The color noise describes interaction of the molecular system with the thermostat. The thermal transport of silicon and germanium nanoribbons with atomically smooth (perfect) and rough (porous) edges are studied. We show that the existence of rough (porous) edges and the quantum statistics of phonon change drastically the low-temperature thermal conductivity of the nanoribbon in comparison with that of the perfect nanoribbon with atomically smooth edges and classical phonon dynamics and statistics. The rough-edge phonon scattering and weak anharmonicity of the considered lattice produce a weakly pronounced maximum of thermal conductivity of the nanoribbon at low temperature.
Authors:
Yuriy A Kosevich; Alexander V Savin; Andrés Cantarero
Related Documents :
23015173 - Optical diagnostics of mechanical properties of red blood cells based on the deformatio...
23800873 - Intrinsic region length scaling of heavily doped carbon nanotube p-i-n junctions.
18542553 - Twin-core fiber optical tweezers.
Publication Detail:
Type:  Journal Article     Date:  2013-01-03
Journal Detail:
Title:  Nanoscale research letters     Volume:  8     ISSN:  1931-7573     ISO Abbreviation:  Nanoscale Res Lett     Publication Date:  2013  
Date Detail:
Created Date:  2013-03-18     Completed Date:  2013-03-19     Revised Date:  2013-03-21    
Medline Journal Info:
Nlm Unique ID:  101279750     Medline TA:  Nanoscale Res Lett     Country:  United States    
Other Details:
Languages:  eng     Pagination:  7     Citation Subset:  -    
Affiliation:
Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia. yukosevich@gmail.com.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Nanoscale Res Lett
Journal ID (iso-abbrev): Nanoscale Res Lett
ISSN: 1931-7573
ISSN: 1556-276X
Publisher: Springer
Article Information
Download PDF
Copyright ©2013 Kosevich et al; licensee Springer.
open-access:
Received Day: 24 Month: 9 Year: 2012
Accepted Day: 11 Month: 12 Year: 2012
collection publication date: Year: 2013
Electronic publication date: Day: 3 Month: 1 Year: 2013
Volume: 8 Issue: 1
First Page: 7 Last Page: 7
PubMed Id: 23281873
ID: 3599081
Publisher Id: 1556-276X-8-7
DOI: 10.1186/1556-276X-8-7

Effects of quantum statistics of phonons on the thermal conductivity of silicon and germanium nanoribbons
Yuriy A Kosevich12 Email: yukosevich@gmail.com
Alexander V Savin1 Email: asavin@center.chph.ras.ru
Andrés Cantarero2 Email: cantarer@uv.es
1Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
2Materials Science Institute, University of Valencia, PO Box 22085, Valencia, 46071, Spain

Background

It has been recently shown [1] that silicon and germanium nanowires can give a figure of merit of over 2 at 800 K due to strong reduction of phonon thermal conductivity in nanowires as compared with their equivalent bulk material, i.e., the reduction is caused not only by the alloy disorder, but also by the decrease of the phonon mean free path by reduced-dimensional effects. The effect of temperature on the thermal conductivity of silicon and germanium may be quite different since the Debye temperature of silicon almost doubles that of germanium. The purpose of the present work is to analyze quantum statistic effects on thermal phonon conductivity in silicon and germanium nanoribbons with the use of the novel semiquantum molecular dynamics simulation [2].

Molecular dynamics is a method of numerical modeling of molecular systems based on classical Newtonian mechanics. It does not allow for the description of pure quantum effects such as the freezing out of high-frequency oscillations at low temperatures and the related decrease to zero of heat capacity for T→0. On the other hand, because of its complexity, a pure quantum-mechanical description does not allow, in general, the detailed modeling of the dynamics of many-body systems. To overcome these obstacles, different semiclassical methods, which allow to take into account quantum effects, have been proposed [3-9].

The most convenient method for numerical modeling is to use the Langevin equations with color-noise random forces [5,7]. In this approximation, the dynamics of the system is described with the use of classical Newtonian equations of motion while the quantum effects are introduced through random Langevin-like forces with a specific power spectral density (the color noise), which describes the interaction of the molecular system with the thermostat. Here, we apply such semiquantum approach to the simulation of heat transport in low-dimensional nanostructures such as semiconductor nanoribbons with atomically smooth (perfect) and porous (rough) edges. Our previous analytical studies [10] and molecular dynamics simulations [11] have revealed the dramatic decrease of phonon thermal conductivity in quasi-one-dimensional nanostructures with rough (porous) surface and edge layers.


Methods

In the semiquantum molecular dynamics approach, the dynamics of the system is described with the use of the classical Newtonian equations of motion while the effects of phonon quantum statistics are introduced through random Langevin-like forces with a specific power spectral density (the color noise). If the random forces are delta-correlated in a time domain, this corresponds to the white noise with a flat power spectral density. This situation corresponds to high-enough temperatures, when kBT is larger than the quantum of the highest phonon frequency mode in the system, kBT≫ℏωmax. However, for low-enough temperature, kBT≪ℏωmax, the stochastic dynamics of the system should be described with the use of random Langevin-like forces with a non-flat power spectral density, which corresponds to the system with color noise. For the generation of color noise with the power spectrum, consistent with the quantum fluctuation-dissipation theorem, we use the method which was developed in [2]. The semiquantum molecular dynamics approach has allowed us to model the transition in the rough-edge nanoribbons from the thermal insulator-like behavior at high temperature, when the thermal conductivity decreases with the conductor length (see [11]), to the ballistic conductor-like behavior at low temperature, when the thermal conductivity increases with the conductor length. Here, we apply the semiquantum molecular dynamics approach for the modeling of temperature dependence of thermal phonon conductivity in silicon and germanium nanoribbons with rough edges. We show that the presence of rough edges significantly decreases the room-temperature thermal conductivity of the nanoribbon and results in the weakly pronounced maximum of thermal conductivity at low temperatures. The latter property is closely related with the absence of (or weak) anharmonicity of the lattice potential and correspondingly weak anharmonic (Umklapp) scattering. In our semiquantum molecular dynamics approach, we make use neither of the quantum corrections to classically predicted thermal conductivity, e.g., discussed in [12], nor of the values of Umklapp or surface roughness-induced scattering rates, calculated independently from molecular dynamics simulation, e.g., discussed in [13,14]. To diminish the contact (interface) boundary resistance between the nanoribbon and heat reservoirs, e.g., discussed in [15], we model the nanoribbon with relatively long parts, immersed in semiquantum heat baths (see also [2]).


Results and discussion

We consider a system which consists of K parallel atomic chains in one plane [11]. To model the diamond-like lattice, we assume that each atom has four nearest neighbors. In this connection, we would like to mention that the considered model cannot be applied directly to the predicted [16-19] and recently grown [20,21] two-dimensional lattice with graphene-like structure, made from Si or Ge atoms, the silicene. Our main goal is to provide semiquantum modeling of the heat transport and effective ‘isotopic effect’ on phonon heat transport in low-dimensional structures made from Si or Ge atoms, arranged in lattices, which reflect the symmetry of corresponding bulk materials. Since the lattice structure (the number of nearest neighbors) of the considered quasi-two-dimensional nanoribbons reflects the bulk one, our model can also be applied to the quasi-three-dimensional nanowires with bulk-like structure. The isotopic effect on phonon heat transport can be used for the understanding and prediction of the trends in the changes of thermal conductivity in low-dimensional nanostructures caused by the essential change in ion masses accompanied by less strong change in inter-ion force constants.

The Hamiltonian of the system describes the kinetic energy and harmonic interparticle interaction potentials. The characteristic energy of the nearest-neighbor interaction energy E0 can be related with the energy of the LO phonon mode in the semiconductor, which is approximately 15 THz in Si and approximately 9 THz in Ge. The ratio of these maximal frequencies is close to the ratio of the Debye temperatures, TD = 645 K in Si and TD = 374 K in Ge, and to the ratio of the inverse square root of Si and Ge atomic masses, which reflect the approximate isotopic effect in phonon properties of Si and Ge lattices when the materials can be described approximately with the same force constants and different atomic masses (see [22]). The particle mass (M) and lattice constant (a) are determined by the mass and characteristic period of the corresponding bulk semiconductor material, a = 5.43 Å and a = 5.658 Å for Si and Ge, respectively.

We consider a ribbon which consists of K = 18 atomic chains. To model the roughness of the ribbon edges, we delete with probability (porosity) p = 1− d some atoms from K1 chains adjacent to each ribbon edge. Here, K1 is a width of the rough edges, and d, 0 ≤ d ≤ 1, is a fraction of the deleted atoms in the edge atomic chains. In our simulations, we take K1 = 4 and d = 0.80. In Figure 1, we show an example of the nanoribbon with porous edges, cut from the two-dimensional diamond-like lattice in which each atom has four nearest neighbors.

We computed the thermal conductivity κ(NT) for the nanoribbons with the length of N = 500 unit cells. In Figure 2, we plot the results of the semiquantum molecular dynamics simulation of thermal conductivity of Si and Ge nanoribbons. As one can see in this figure, the thermal conductivities of both Si and Ge nanoribbons have a weakly pronounced maximum at low temperatures, Tmax = 85 K for Si and Tmax = 91 K for Ge. This property of thermal conductivity temperature dependence is a consequence of rough-edge scattering as the main phonon scattering mechanism at elevated temperatures and the absence of (or weak) anharmonicity of the lattice potential and correspondingly the absence of (or weak) anharmonic (Umklapp) scattering. The latter causes a clear peak in the thermal conductivity versus temperature both in finite bulk crystals of pure silicon [23] and in low-dimensional nanoribbons [2]. The values of thermal conductivities of the Si and Ge nanoribbons for T > Tmax approximately reproduce an isotopic effect because κ∝vph∝1/M, where vph is the group velocity of acoustic phonons (see also [22]). The weakly pronounced maximum of the thermal conductivity, at approximately 150 K, was recently observed in Si nanowires in [1]. We want to emphasize in this connection that thermal conductivities of the nanoribbons with the same widths, interparticle potentials, and perfect edges diverge in the limit of N for all temperatures (see [2]). On the other hand, the obtained suppression of thermal conductivity in the rough-edge nanoribbons for the used value of surface porosity p = 0.20 is not so strong as that for the Si nanowires with rough surfaces which were studied recently in [24] (compare Figures 1 and 2 in this work with Figures one and three in [24]).


Conclusions

Semiquantum molecular dynamics simulations with random Langevin-like forces with a specific power spectral density show that quantum statistics of phonons and porosity of edge layers dramatically change the thermal conductivity of Si and Ge nanoribbons at low and room temperatures in comparison with that of the nanoribbons with perfect edges and classical phonon dynamics and statistics. Phonon scattering by the rough edges and weak anharmonicity of the considered lattice produce weakly pronounced maximum of the thermal conductivity of the nanoribbon at low temperature. The approximate isotopic effect is manifested in the κ∝vph∝1/M scaling of phonon thermal conductivities of the rough-edge nanoribbons with harmonic lattices at elevated temperature. This effect can be used for the prediction of the trends in the changes of phonon thermal conductivity in low-dimensional nanostructures, which was caused by the essential change in atomic masses accompanied by a less strong change in inter-atomic force constants.


Competing interests

The authors declare that they have no competing interests.


Authors’ contributions

This work was finished through the collaboration of all authors. YAK proposed the model for the lattice and isotopic effect. AVS has been working on the MD simulation. YAK and AC have participated in the interpretation of results and in revising the manuscript. All authors read and approved the final manuscript.


Acknowledgements

The authors thank the financial support given by the project CSD2010-0044, which belongs to the ‘Consolider Ingenio’ Programme of the Spanish Ministry of Finances and Competitiveness.


References
Lee EK,Yin L,Lee Y,Lee JW,Lee SJ,Lee J,Cha SN,Whang D,Hwang GS,Hippalgaonkar K,Majumdar A,Yu C,Choi BL,Kim JM,Kim K,Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport propertiesNano LettYear: 2918122012
Savin AV,Kosevich Yu A,Cantarero A,Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructuresPhys Rev BYear: 201286064305
Wang JS,Quantum thermal transport from classical molecular dynamicsPhys Rev LettYear: 20079916060117995230
Donadio D,Galli G,Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the Boltzmann transport equationPhys Rev LettYear: 20079925550218233531
Heatwole EM,Prezhdo OV,Second-order Langevin equation in quantized Hamilton dynamicsJ Physical Soc JpnYear: 20087704400110.1143/JPSJ.77.044001
Buyukdagli S,Savin AV,Hu B,Computation of the temperature dependence of the heat capacity of complex molecular systems using random color noisePhys Rev EYear: 200878066702
Ceriotti M,Bussi G,Parrinello M,Nuclear quantum effects in solids using a colored-noise thermostatPhys Rev LettYear: 200910303060319659261
Dammak H,Chalopin Y,Laroche M,Hayoun M,Greffet JJ,Quantum thermal bath for molecular dynamics simulationPhys Rev LettYear: 200910319060120365913
Wang JS,Ni X,Jiang JW,Molecular dynamics with quantum heat baths: application to nanoribbons and nanotubesPhys Rev BYear: 200980224302
Kosevich YuA,Multichannel propagation and scattering of phonons and photons in low-dimension nanostructuresPhysics-UspekhiYear: 200851848
Kosevich Yu A,Savin AV,Reduction of phonon thermal conductivity in nanowires and nanoribbons with dynamically rough surfaces and edgesEurophys LettYear: 2009881400210.1209/0295-5075/88/14002
Turney JE,McGaughey AJH,Amon CH,Assessing the applicability of quantum corrections to classical thermal conductivity predictionsPhys Rev BYear: 200979224305
Mingo N,Calculation of Si nanowire thermal conductivity using complete phonon dispersion relationsPhys Rev BYear: 200368113308
Martin P,Aksamija Z,Pop E,Ravaioli U,Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowiresPhys Rev LettYear: 200910212550319392295
Zhang W,Mingo N,Fisher TS,Simulation of phonon transport across a non-polar nanowire junction using an atomistic Green’s function methodPhys Rev BYear: 200776195429
Roethlisberger U,Andreoni W,Parrinello M,Structure of nanoscale silicon clustersPhys Rev LettYear: 19947266510.1103/PhysRevLett.72.66510056492
Takeda K,Shiraishi K,Theoretical possibility of stage corrugation in Si and Ge analogs of graphitePhys Rev BYear: 1994501491610.1103/PhysRevB.50.14916
Cahangirov S,Topsakal M,Aktuerk E,Seahin H,Ciraci S,Two- and one-dimensional honeycomb structures of silicon and germaniumPhys Rev LettYear: 200910223680419658958
Houssa M,Pourtois G,Afanasiev VV,Stesmans A,Can silicon behave like graphene? A first-principles studyAppl Phys LettYear: 20109711210610.1063/1.3489937
Vogt P,De Padova P,Quaresima C,Avila J,Frantzeskakis E,Asensio MC,Resta A,Ealet B,Le Lay G,Silicene: compelling experimental evidence for graphenelike two-dimensional siliconPhys Rev LettYear: 201210815550122587265
Fleurence A,Friedlein R,Ozaki T,Kawai H,Wang Y,Yamada-Takamura Yu,Experimental evidence for epitaxial silicene on diboride thin filmsPhys Rev LettYear: 201210824550123004288
Ziman JM,Electrons and PhononsYear: 1960Oxford: Oxford University Press
Klitsner T,VanCleve JE,Fisher HE,Pohl RO,Phonon radiative heat transfer and surface scatteringPhys Rev BYear: 198838757610.1103/PhysRevB.38.7576
Lim J,Hippalgaonkar K,Andrews SC,Majumdar A,Yang P,Quantifying surface roughness effects on phonon transport in silicon nanowiresNano LettYear: 2475122012

Figures

[Figure ID: F1]
Figure 1 

Nanoribbon with porous edges cut from two-dimensional diamond-like lattice where each atom has four nearest neighbors.



[Figure ID: F2]
Figure 2 

Thermal conductivity κ of rough-edge nanoribbon versus temperature for ribbon length of N = 500 unit cells. Thermal conductivity κ of rough-edge nanoribbon (ribbon width K = 18 atomic chains, rough edges widths K1 = 4 atomic chains, porosity of rough edges p = 0.20) versus temperature T for ribbon length of N = 500 unit cells of the two-dimensional diamond-like lattice of Ge (blue circles, line 1) or Si (red diamonds, line 2) atoms.



Article Categories:
  • Nano Express

Keywords: Thermal conductivity, Molecular dynamics simulation, Nanoribbon, Silicon, Germanium, Isotopic effect.

Previous Document:  A flexible ancestral genome reconstruction method based on gapped adjacencies.
Next Document:  Inverse Association between Cancer Risks and Age in Schizophrenia Patients: a 12-year Nationwide Coh...