Document Detail


Effects of inspiratory resistive load on respiratory control in hypercapnia and exercise.
MedLine Citation:
PMID:  2501281     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
Eight healthy young men underwent two separate steady-state incremental exercise runs within the aerobic range on a treadmill with alternating periods of breathing with no load (NL) and with an inspiratory resistive load (IRL) of approximately 12 cmH2O.1-1.s. End-tidal PCO2 was maintained constant throughout each run at the eucapnic or a constant hypercapnic level by adding 0-5% CO2 to the inspired O2. Hypercapnia caused a steepening, as well as upward shift, relative to the corresponding eucapnic ventilation-CO2 output (VE - VCO2) relationship in NL and IRL. Compared with NL, the VE - VCO2 slope was depressed by IRL, more so in hypercapnic [-19.0 +/- 3.4 (SE) %] than in eucapnic exercise (-6.0 +/- 2.0%), despite a similar increase in the slope of the occlusion pressure at 100 ms - VCO2 (P100 - VCO2) relationship under both conditions. The steady-state hypercapnic ventilatory response at rest was markedly depressed by IRL (-22.6 +/- 7.5%), with little increase in P100 response. For a given inspiratory load, breathing pattern responses to separate or combined hypercapnia and exercise were similar. During IRL, VE was achieved by a greater tidal volume (VT) and inspiratory duty cycle (TI/TT) along with a lower mean inspiratory flow (VT/TI). The increase in TI/TT was solely because of a prolongation of inspiratory time (TI) with little change in expiratory duration for any given VT. The ventilatory and breathing pattern responses to IRL during CO2 inhalation and exercise are in favor of conservation of respiratory work.(ABSTRACT TRUNCATED AT 250 WORDS)
Authors:
C S Poon
Publication Detail:
Type:  Journal Article; Research Support, U.S. Gov't, P.H.S.    
Journal Detail:
Title:  Journal of applied physiology (Bethesda, Md. : 1985)     Volume:  66     ISSN:  8750-7587     ISO Abbreviation:  J. Appl. Physiol.     Publication Date:  1989 May 
Date Detail:
Created Date:  1989-08-25     Completed Date:  1989-08-25     Revised Date:  2013-09-26    
Medline Journal Info:
Nlm Unique ID:  8502536     Medline TA:  J Appl Physiol (1985)     Country:  UNITED STATES    
Other Details:
Languages:  eng     Pagination:  2391-9     Citation Subset:  IM; S    
Affiliation:
Department of Electrical and Electronics Engineering, North Dakota State University, Fargo 58105.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Adult
Carbon Dioxide / blood,  pharmacology*
Humans
Inhalation*
Male
Models, Theoretical
Oxygen / blood
Partial Pressure
Physical Exertion*
Reference Values
Regression Analysis
Respiration* / drug effects
Tidal Volume
Grant Support
ID/Acronym/Agency:
HL-30794/HL/NHLBI NIH HHS
Chemical
Reg. No./Substance:
124-38-9/Carbon Dioxide; 7782-44-7/Oxygen

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Comparison of three tracers for detecting lung epithelial injury in anesthetized sheep.
Next Document:  Effects of inspiratory elastic load on respiratory control in hypercapnia and exercise.