Document Detail

Effects of eccentric exercise-induced muscle damage on intramyocellular lipid concentration and high energy phosphates.
MedLine Citation:
PMID:  20706732     Owner:  NLM     Status:  In-Process    
Eccentric exercise is known to cause changes to the ultrastructure of skeletal muscle and, in turn, may alter the ability of the muscle to store and utilise intracellular substrates such as intramyocellular lipid (IMCL). The purpose of this study was to test the hypothesis that exercise-induced muscle damage (EIMD) results in IMCL accumulation. Six males (31 ± 6 years; mean ± SD, and 72.3 ± 9.7 kg body mass) performed 300 unilateral, maximal, isokinetic, eccentric contractions (Ecc) (30° s(-1)) of the quadriceps on an isokinetic dynamometer, followed immediately by an equal amount of work by the contralateral leg but with concentric action (Con). Phosphate compounds and IMCL content of the vastus lateralis of both legs were measured using (31)P and (1)H magnetic resonance spectroscopy. IMCL content was higher in Ecc than Con 24 h post but the reverse was evident 48 h post-exercise (P = 0.046). A significant time × trial interaction for resting [P(i)] (P = 0.045), showed increases in Ecc across time but no change in Con. A significant main effect of trial (P = 0.002) was apparent indicating the Ecc leg had marked metabolic dysfunction. The P(i)/PCr ratio showed a significant effect of trial (P = 0.001) with an increase evident in Ecc leg, primarily due to increases in [P(i)]. The present study highlights changes in IMCL content of skeletal muscle following EIMD.
Jonathan D Hughes; Nathan A Johnson; Stephen J Brown; Toos Sachinwalla; David W Walton; Stephen R Stannard
Publication Detail:
Type:  Journal Article     Date:  2010-08-13
Journal Detail:
Title:  European journal of applied physiology     Volume:  110     ISSN:  1439-6327     ISO Abbreviation:  Eur. J. Appl. Physiol.     Publication Date:  2010 Dec 
Date Detail:
Created Date:  2010-11-22     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  100954790     Medline TA:  Eur J Appl Physiol     Country:  Germany    
Other Details:
Languages:  eng     Pagination:  1135-41     Citation Subset:  IM    
Institute of Food, Nutrition, and Human Health, Massey University, Palmerston North, New Zealand.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  The effect of caffeine on intraocular pressure: a systematic review and meta-analysis.
Next Document:  Effects of a single habituation session on neuromuscular isokinetic profile at different movement ve...