Document Detail


Effects of chronic nicotinic ligand exposure on functional activity of nicotinic acetylcholine receptors expressed by cells of the PC12 rat pheochromocytoma or the TE671/RD human clonal line.
MedLine Citation:
PMID:  2002334     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
Studies were conducted to ascertain the temporal and dose-dependent effects of nicotinic ligand exposure on functional activity of different nicotinic acetylcholine receptor (nAChR) subtypes, as expressed by cells of the PC12 rat pheochromocytoma (ganglia-type nAChR) or the TE671/RD human (muscle-type nAChR) clonal line. Chronic (3-72-h) agonist (nicotine or carbamylcholine) treatment of cells led to a complete (TE671) or nearly complete (PC12) loss of functional nAChR responses, which is referred to as "functional inactivation." Some inactivation of nAChR function was also observed for the nicotinic ligands d-tubocurarine (d-TC), mecamylamine, and decamethonium. Half-maximal inactivation of nAChR function was observed within 3 min for TE671 cells and within 10 min for PC12 cells treated with inactivating ligands. Functional inactivation occurred with dose dependencies that could not always be reconciled with those obtained for acute agonist activation of nAChR function or for acute inhibition of those responses by d-TC, decamethonium, or mecamylamine. Treatment of TE671 or PC12 cells with the nicotinic antagonist pancuronium or alcuronium alone had no effect on levels of expression of functional nAChRs. However, evidence was obtained that either of these antagonists protected TE671 cell muscle-type nAChRs or PC12 cell ganglia-type nAChRs from functional inactivation on long-term treatment with agonists. Recovery of TE671 cell nAChR function following treatment with carbamylcholine, nicotine, or d-TC occurred with half-times of 1-3 days whether cells were maintained in situ or harvested and replated after removal of ligand. By contrast, 50% recovery of functional nAChRs on PC12 cells occurred within 2-6 h after drug removal. In either case the time course for recovery from nAChR functional inactivation is much slower than recovery from nAChR "functional desensitization," which is a reversible process that occurs on shorter-term (0-5-min) agonist exposure of cells. These results indicate that ganglia-type and muscle-type nAChRs are similar in their sensitivities to functional inactivation by nicotinic ligands but differ in their rates of recovery from and onset of those effects. The ability of drugs such as the agonists d-TC, decamethonium, and mecamylamine to induce functional inactivation may relate to their activities as partial/full agonists, channel blockers, and/or allosteric regulators. Effects of drugs such as pancuronium and alcuronium are likely to reflect simple competitive inhibition of primary ligand binding at functional activation sites.(ABSTRACT TRUNCATED AT 400 WORDS)
Authors:
R J Lukas
Related Documents :
1338454 - Renal osteodystrophy and vitamin d derivatives: cellular mechanisms of hyperparathyroid...
1310564 - Regulation of cell growth, c-myc mrna, and 1,25-(oh)2 vitamin d3 receptor in c3h/10t1/2...
14741264 - Tmc-95a, a reversible proteasome inhibitor, induces neurite outgrowth in pc12 cells.
8951664 - Selective localization and regulated release of calcitonin gene-related peptide from de...
21863324 - Estimating intestinal absorption of inorganic and organic selenium compounds by in vitr...
1338454 - Renal osteodystrophy and vitamin d derivatives: cellular mechanisms of hyperparathyroid...
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, P.H.S.    
Journal Detail:
Title:  Journal of neurochemistry     Volume:  56     ISSN:  0022-3042     ISO Abbreviation:  J. Neurochem.     Publication Date:  1991 Apr 
Date Detail:
Created Date:  1991-04-15     Completed Date:  1991-04-15     Revised Date:  2007-11-14    
Medline Journal Info:
Nlm Unique ID:  2985190R     Medline TA:  J Neurochem     Country:  UNITED STATES    
Other Details:
Languages:  eng     Pagination:  1134-45     Citation Subset:  IM    
Affiliation:
Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013-4496.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Adrenal Gland Neoplasms / metabolism*
Animals
Clone Cells
Down-Regulation
Humans
Ligands
Muscles / cytology,  metabolism*
Nicotine / metabolism*
Pheochromocytoma / metabolism*
Rats
Receptors, Nicotinic / physiology*
Time Factors
Tumor Cells, Cultured
Grant Support
ID/Acronym/Agency:
NS-16821/NS/NINDS NIH HHS
Chemical
Reg. No./Substance:
0/Ligands; 0/Receptors, Nicotinic; 54-11-5/Nicotine

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Autoradiographic imaging of [3H]phorbol 12,13-dibutyrate binding to protein kinase C in Alzheimer's ...
Next Document:  Decreased release of D-aspartate in the guinea pig spinal cord after lesions of the red nucleus.