Document Detail


Effects of cascaded vgb promoters on poly(hydroxybutyrate) (PHB) synthesis by recombinant Escherichia coli grown micro-aerobically.
MedLine Citation:
PMID:  25216582     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Micro-aeration is a situation that will be encountered in bacterial cell growth especially when the saturated dissolved oxygen level cannot match the demand from cells grown to a high density. Therefore, it is desirable to separate aerobic growth and micro-aerobic product formation into two stages using methods including anaerobic or micro-aerobic promoters that are inducible under low aeration intensity. Eleven potential low aeration-inducible promoters were cloned and studied for their induction strengths under micro-aerobic conditions. Of them, Vitreoscilla hemoglobin promoter (P vgb ) was found to be the strongest among all 11 promoters. At the same time, six E. coli hosts harboring poly(R-3-hydroxybutyrate) (PHB) synthesis operon phaCAB were compared for their ability to accumulate poly(hydroxyalkanoates) (PHA). E. coli S17-1 was demonstrated to be the best host achieving a 70 % (mass fraction) PHB in the cell dry weigh (CDW) after 48 h under micro-aerobic growth. Cascaded P vgb repeats (P nvgb ) were investigated for enhanced expression level under micro-aerobic growth. The highest PHA production was obtained when a promoter containing eight cascaded P vgb repeats (P 8vgb ) was used, 5.37 g/l CDW containing 90 % PHB was obtained from recombinant in E. coli S17-1. Cells grew further to 6.30 g/l CDW containing 91 % PHB when oxygen-responsive transcription factor ArcA (arcA) was deleted in the same recombinant E. coli S17-1. This study revealed that vgb promoter containing cascaded P vgb repeats (P 8vgb ) is useful for product formation under low aeration intensity.
Authors:
Hong Wu; Huan Wang; Jinchun Chen; Guo-Qiang Chen
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-9-13
Journal Detail:
Title:  Applied microbiology and biotechnology     Volume:  -     ISSN:  1432-0614     ISO Abbreviation:  Appl. Microbiol. Biotechnol.     Publication Date:  2014 Sep 
Date Detail:
Created Date:  2014-9-13     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8406612     Medline TA:  Appl Microbiol Biotechnol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  The biosurfactant viscosin transiently stimulates n-hexadecane mineralization by a bacterial consort...
Next Document:  Reduced dorsal premotor cortex and primary motor cortex connectivity in older adults.