Document Detail


Effects of acute hypoxia/acidosis on intracellular pH in differentiating neural progenitor cells.
MedLine Citation:
PMID:  22608071     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
The response of differentiating mouse neural progenitor cells, migrating out from neurospheres, to conditions simulating ischemia (hypoxia and extracellular or intracellular acidosis) was studied. We show here, by using BCECF and single cell imaging to monitor intracellular pH (pH(i)), that two main populations can be distinguished by exposing migrating neural progenitor cells to low extracellular pH or by performing an acidifying ammonium prepulse. The cells dominating at the periphery of the neurosphere culture, which were positive for neuron specific markers MAP-2, calbindin and NeuN had lower initial resting pH(i) and could also easily be further acidified by lowering the extracellular pH. Moreover, in this population, a more profound acidification was seen when the cells were acidified using the ammonium prepulse technique. However, when the cell population was exposed to depolarizing potassium concentrations no alterations in pH(i) took place in this population. In contrast, depolarization caused an increase in pH(i) (by 0.5 pH units) in the cell population closer to the neurosphere body, which region was positive for the radial cell marker (GLAST). This cell population, having higher resting pH(i) (pH 6.9-7.1) also responded to acute hypoxia. During hypoxic treatment the resting pH(i) decreased by 0.1 pH units and recovered rapidly after reoxygenation. Our results show that migrating neural progenitor cells are highly sensitive to extracellular acidosis and that irreversible damage becomes evident at pH 6.2. Moreover, our results show that a response to acidosis clearly distinguishes two individual cell populations probably representing neuronal and radial cells.
Authors:
Tommy Nordström; Linda C Jansson; Lauri M Louhivuori; Karl E O Akerman
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-4-28
Journal Detail:
Title:  Brain research     Volume:  -     ISSN:  1872-6240     ISO Abbreviation:  -     Publication Date:  2012 Apr 
Date Detail:
Created Date:  2012-5-21     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0045503     Medline TA:  Brain Res     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 Elsevier B.V. All rights reserved.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Rodent models of TDP-43: recent advances.
Next Document:  Dorsal horn antinociception mediated by the paraventricular hypothalamic nucleus and locus coeruleou...