Document Detail

Effects of β -Adrenoceptor Subtypes on Cardiac Function in Myocardial Infarction Rats Exposed to Fine Particulate Matter (PM 2.5 ).
Jump to Full Text
MedLine Citation:
PMID:  25187901     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
The pathophysiological mechanisms of heart failure (HF) stems were mainly from longstanding overactivation of the sympathetic nervous system and renin-angiotensin-aldosterone system. Recent studies highlighted the potential benefits of β1-adrenoceptor (β1-AR) blocker combined with β2-adrenergic receptor (β2-AR) agonist in patients with HF. Long-term exposure to fine particulate air pollution, such as particulate matter ≤ 2.5 μm in diameter (PM2.5), has been found associated with acute myocardial infarction (AMI) which is the most common cause of congestive HF. In this study, we have investigated the effect of combined metoprolol and terbutaline on cardiac function in a rat model of AMI exposed to PM2.5. Our results demonstrated that short-term exposure to PM2.5 contributes to aggravate cardiac function in rats with myocardial infarction. The combined use of β1-AR blocker and β2-AR agonist is superior to β1-AR blocker alone for the treatment of AMI rats exposed to PM2.5. The combination of β1-AR blocker and β2-AR agonist may decrease the mortality of patients with myocardial infarction who have been exposed to PM2.5.
Authors:
Yuping Gao; Jiyuan Lv; Yuanyuan Lin; Xuewen Li; Lixia Wang; Yanping Yin; Yan Liu
Publication Detail:
Type:  Journal Article     Date:  2014-08-12
Journal Detail:
Title:  BioMed research international     Volume:  2014     ISSN:  2314-6141     ISO Abbreviation:  Biomed Res Int     Publication Date:  2014  
Date Detail:
Created Date:  2014-09-04     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101600173     Medline TA:  Biomed Res Int     Country:  United States    
Other Details:
Languages:  eng     Pagination:  308295     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Biomed Res Int
Journal ID (iso-abbrev): Biomed Res Int
Journal ID (publisher-id): BMRI
ISSN: 2314-6133
ISSN: 2314-6141
Publisher: Hindawi Publishing Corporation
Article Information
Download PDF
Copyright © 2014 Yuping Gao et al.
open-access:
Received Day: 31 Month: 5 Year: 2014
Accepted Day: 5 Month: 6 Year: 2014
Print publication date: Year: 2014
Electronic publication date: Day: 12 Month: 8 Year: 2014
Volume: 2014E-location ID: 308295
PubMed Id: 25187901
ID: 4145385
DOI: 10.1155/2014/308295

Effects of β-Adrenoceptor Subtypes on Cardiac Function in Myocardial Infarction Rats Exposed to Fine Particulate Matter (PM2.5)
Yuping Gao12
Jiyuan Lv1*
Yuanyuan Lin2
Xuewen Li2
Lixia Wang1
Yanping Yin1
Yan Liu1
1First Hospital of Shanxi Medical University, Taiyuan 030001, China
2The Affiliated Dayi Hospital of Shanxi Medical University, Taiyuan 030032, China
Correspondence: *Jiyuan Lv: lv68971@163.com
[other] Academic Editor: Jason Ng

1. Introduction

β-Adrenergic receptor (β-adrenoceptor, β-AR) is an important member of sympathetic nervous system, which plays an important role in regulating the heart function by mediating the physiological effect of catecholamines [1]. β-AR has at least 3 subtypes (β1, β2, and β3), and the former two are important in the regulation of excitation-contraction coupling of myocardium and have positive inotropic response related to cell growth  [2]. Activation of β1-adrenergic receptor (β1-AR) can induce myocardial cell hypertrophy, apoptosis, cell necrosis, and myocardial remodeling activity in the earlier stage of heart failure. β2-Adrenergic receptor (β2-AR) signalling can also grant protection against programmed cell death in myocytes, countering the proapoptotic action of β1-adrenoceptor stimulation via a Gi-mediated process [35]. In contrast, β3-adrenergic receptor (β3-AR) is very rare in human cardiac myocytes, which may appear only in severe heart failure. Combined use of β1-AR blocker and β2-AR agonist has been proposed to treat chronic heart failure [6], and they have demonstrated improved cardiac function in rats with heart failure, ventricular remodeling, and myocardial apoptosis [7, 8].

Recently, air pollution has been found to increase risks for a wide range of diseases. Studies indicate that in recent years exposure levels have increased significantly particularly in rapidly industrializing countries with large populations. Exposure to particulate matter with diameter less than or equal to 2.5 μm (PM2.5) has been implicated as a risk factor on respiratory system and cardiovascular system [9, 10]. Particularly, it has been observed that long-term [1113] or short-term [14, 15] PM exposures might trigger acute ischemic heart disease. The possible mechanisms include activation of the sympathetic nervous system, oxidative stress, inflammation, atherosclerosis, and destruction of blood coagulation, thus affecting the cardiovascular system, for instance, ischemic stroke [16, 17], echocardiography (ECG) ST-segment depression [18, 19], increased plasma viscosity [20], increased circulating markers of inflammation [21, 22], and changes in heart rate variability [23, 24].

Until now, to the best of our knowledge, there were no studies on the effect of β-AR subtypes on cardiac function in rats with myocardial infarction after administration of PM2.5. The aim of this study is to investigate the effect of metoprolol (a β1-AR blocker) and terbutaline (a β2-AR agonist) on cardiac function in a rat model of myocardial infarction rats after exposure to PM2.5.


2. Materials and Methods
2.1. Animals

Adult male Sprague-Dawley rats weighing 200–250 g were obtained from the Laboratory Animal Center of Shanxi Medical University, China. All rats were housed in light-controlled animal quarters with temperature of 23 ± 2°C and were provided free access to food and libitum. This study was approved by the Bioethical Committee of Shanxi Medical University and all the procedures followed the National Guideline for the Care and Use of Laboratory Animals.

2.2. Acute Myocardial Infarction and Study Groups

The rats were anesthetized with sodium pentobarbital (60 mg/kg, i.p.) and underwent sterile surgery. Acute myocardial infarction (AMI) was induced by ligating the left anterior descending (LAD) coronary artery for the study group but without ligating the vessel for sham surgery group as previously described [25, 26]. In order to investigate the effect of PM2.5, rats were randomly assigned to two different study arms: one study arm without PM exposure and the second study arm with PM exposure.

In the first study, rats were divided into five groups (n = 6 in each group): sham, AMI, metoprolol (AstraZeneca Pharmaceutical Co., Ltd., Wuxi, China, 20 mg/kg body weight twice a day), terbutaline (AstraZeneca Pharmaceutical Co., Ltd., Wuxi, China, 2 mg/kg body weight twice a day), and combined use of metoprolol (20 mg/kg body weight twice a day) and terbutaline (2 mg/kg body weight twice a day). Metoprolol and terbutaline were administered orally by gavage.

For the second study, rats were exposed to PM2.5 (Label # 2783, National Institute for Standards and Technology, USA). All the rats were anesthetized with sodium pentobarbital (60 mg/kg, i.p.) and placed supine with extended neck on an angled board [27]. PM2.5 at a final concentration of 40 mg/kg body weight was administrated through a cannula inserted into the trachea just above the bifurcation [28]. This intratracheal instillation procedures were done within 3 seconds. Then, rats were divided into five groups (n = 10 in each group): sham, AMI, metoprolol (20 mg/kg body weight twice a day), terbutaline (2 mg/kg body weight twice a day), and combined use of metoprolol (20 mg/kg body weight twice a day) and terbutaline (2 mg/kg body weight twice a day).

2.3. In Vivo Measurement of Cardiac Function

Rats were anesthetized with sodium pentobarbital (60 mg/kg, i.p.), a polyethylene catheter connected with a pressure transducer was inserted into the left ventricular cavity via the right carotid artery [25]. Left ventricular systolic pressure (LVSP) and left ventricular diastolic pressure (LVDP) were digitally processed via hemodynamic analyzing system (Powerlab Hardware, AD Instruments) [29]. Maximal positive and negative values of the instantaneous first derivative of LVP (+dP/dtmax⁡ and −dP/dtmax⁡) were derived by computer algorithms.

2.4. ECG and Hemodynamic Measurements

To evaluate the impact of metoprolol and terbutaline on cardiac performance, ECG was performed on all rats before and after MI, as well as after administration of each medication. ECG was performed under anesthetizing with sodium pentobarbital (60 mg/kg, i.p.) to assess left ventricular function as previously described [30]. Images were obtained with Sonos 5500 (Philips Medical Systems, Washington, USA) fitted with probe (frequency of 8 MHz), which generated two-dimensional images at a rate of 100/s, and then analyzed short and long axis images of left ventricle. End-diastolic dimension (EDD) and end-systolic dimension (ESD) were measured. Ejection fraction (EF) was obtained by M-mode echocardiography. Fractional shortening (FS) was calculated by the following equation: FS = [(EDD − ESD)/EDD × 100].

2.5. Western Blotting for Expression of Bcl-2 and Bax Protein

Protein was extracted from frozen left ventricular tissue. Bovine serum albumin as a standard protein concentration was determined by the bicinchoninic acid protein assay (Pierce Rockford, IL). Equal proteins were loaded on 12% SDS-PAGE which were confirmed by Coomassie blue staining. The sample volume is 40 μg. Proteins were transferred to a polyvinylidene membrane [31, 32]. Rat anti-Bcl-2 monoclonal antibody (Santa Cruz Biotechnology; Santa Cruz, CA) and mouse anti-Bax monoclonal antibody (Santa Cruz Biotechnology; Santa Cruz, CA) were used for Bcl-2 and Bax detection, respectively. The bands were visualized by Phototope-HRP Western blot detection kit (New England Biolabs, Beverly, MA) and were scanned by GS-700 densitometer (Bio-Rad Company, Hercules, CA) and then quantified by quantitative procedure. Optical density of the tissue samples was normalized to the control sample in arbitrary densitometry unit.

2.6. Determination of Myocardial Apoptosis by TUNEL

To determine myocardial apoptosis, cardiac tissues from the MI group, sham group, MI + meto group, MI + terbu group, and MI + meto + terbu group were perfused first with 0.9% NaCl for 5 min and then with 4% paraformaldehyde in PBS (pH = 7.4) for 20 min. Ischemic regions were cut to 5 mm thickness at a level of left ventricular long axis and further fixed in 4% paraformaldehyde in PBS for 24 h at room temperature. Fixed tissues were embedded in a paraffin block and two slides at 5 μm thickness were cut from each tissue block [33]. The slides were processed for a TUNEL assay. An In Situ Cell Death Detection Kit (Boehringer Mannheim, USA) was used according to the manufacturer's instructions. Briefly, the slides were treated with H2O2 and incubated with the reaction mixture containing TdT (terminal deoxyribonucleotide transferase) and FITC-conjugated dUTP at 4°C overnight. One part of labeled DNA was visualized with fluorescent microscopy. Another part was incubated subsequently with alkaline phosphatase (AP) conjugated anti-FITC antibody for 1 h at 37°C and then visualized using AP-Red as the chromogen. Finally, the labeled DNA was detected with medical image analysis system. For negative control, TdT was omitted from the reaction mixture. Assays were performed in a blinded manner.

2.7. Myocardial Glutathione (GSH) Measurement

Increased oxidative stress in the myocardium has been observed in heart failure animals; the GSH/GSSG ratio, a measure of overall cellular oxidative stress, was calculated to evaluate the degree of heart failure. Fresh left ventricular myocardial tissue was homogenized. The supernatant was collected for measuring total GSH using a GSH reductase-coupled enzymatic assay on a SPR-960B microplate reader (Changchun Sainuomaide Medical Technology Co., Ltd.). Total GSH was calculated from a standard curve of purified GSH, and glutathione disulfide (GSSG) was measured by masking the reduced GSH with 2-vinyl pyridine in the enzymatic assay. Total GSH = 2 × GSSG + GSH, GSH/GSSG was calculated [34].

2.8. Statistical Analyses

SPSS 17.0 statistical software package was used for the statistical analysis. All quantitative data were presented as mean ± SD and analyzed by using the least-significant difference test of analysis of variance. Differences were considered statistically significant at P < 0.05. Survival rates in each group were analyzed by the Kaplan-Meier method [35].


3. Results
3.1. Cardiac Performance

Representative M-mode recordings of diastolic and systolic left ventricular (LV) diameters were shown in Figure 1. Measurements taken from these views revealed LAD ligation resulted in cardiac chambers dilatation, wall thinning, and descending myocardial function represented by fractional shortening (%FS) and ejection fraction (%EF). Compared with the sham control, the LV fractional shortening and ejection fraction of MI rats were significantly improved after treatments of metoprolol, terbutaline, or combined metoprolol and terbutaline. In particular, the effect of combined metoprolol and terbutaline is better than that of metoprolol or terbutaline alone.

3.2. Hemodynamic Parameters

The hemodynamic parameters of rats are presented in Table 1. LAD ligation resulted in hemodynamic changes indicative of LV dysfunction (Figure 2). Compared with sham group, MI rat exhibited a marked decrease in left ventricular peak systolic pressure (LVSP), LV end-diastolic pressure (LVEDP), as well as impairment in LV contraction and relaxation (±dP/dt). LVSP, LVEDP, and ±dP/dt were increased after treatments of metoprolol, terbutaline, or combined metoprolol and terbutaline. Myocardial function was significantly improved especially after combined use of metoprolol and terbutaline, compared to that of metoprolol or terbutaline alone.

3.3. Protein Expressions

The proapoptotic protein (Bax) and antiapoptotic protein (Bcl-2) were determined by western blot (Figure 3). Compared with the sham group, Bcl-2 protein expression was decreased in the AMI rats. This was associated with an increase in Bax protein. So, Bax to Bcl-2 ratio (Bcl-2/Bax) was decreased in AMI rats. Treatments of metoprolol and terbutaline prevented the decrease of Bcl-2 protein and increase of Bax and decrease of Bcl-2/Bax in AMI rats. The therapeutic effect of combined metoprolol and terbutaline is significantly better than metoprolol or terbutaline alone.

3.4. Myocardial Apoptosis

Myocardial apoptosis in the MI group was significantly higher than that of the sham group. However, the degree of apoptosis after drug interventions was significantly lower in the MI + meto, MI + terbu, and MI + meto + terbu groups than in the MI group (Figure 4). The changes were most marked in the combined metoprolol and terbutaline-treated AMI rats.

3.5. Myocardial GSH

The myocardial tissue GSH/GSSG was determined in sham and AMI animals (Figure 5). Compared with the sham animals, left ventricular GSH/GSSG was decreased in AMI rats. Drug interventions attenuated the decrease of GSH/GSSG. The changes were most marked in the combined metoprolol and terbutaline-treated AMI animals.

3.6. Survival Analysis

Rats exposure to PM2.5 was found with significant ventricular arrhythmia along with a further decrease of heart rate. Forty-eight hours after medication intervention, survival rates were 100%, 60%, 80%, 90%, and 100%, respectively. No significant differences were found between sham group and medication administrated groups (Table 1). There were significant differences between MI nontreatment group and the other treated groups. The Kaplan-Meier survival risk analysis was presented in Figure 6.


4. Discussion

In the present study, significant increase of the ±dp/dt and LVSP and decrease of LVEDP were found in the single or combined use of metoprolol and terbutaline, compared with those in the untreated AMI group. In addition, combined use of metoprolol and terbutaline improved cardiac function significantly more than that of the treatment with metoprolol alone. In addition, cardiac remodeling was evidenced by the reduced FS and EF, as well as progressive dilation of the left ventricle in the AMI rats. This was associated with the increase of LVEDD and LVESD. Metoprolol or terbutaline alone or combined use of metoprolol and terbutaline can significantly ameliorate cardiac remodeling by reducing LVEDD and LVESD and increasing the FS and EF of left ventricle. The combined use of metoprolol and terbutaline had a better therapeutic response than that of metoprolol or terbutaline alone.

Numerous previous clinical studies have confirmed that long-term treatment with β1-AR blocker could significantly improve cardiac function; therefore, they reduce the total mortality and morbidity in patients with heart failure [3638]. Our present study is consistent with the previous study which demonstrated that treatment with β-AR blocker could improve ventricular function and reduce cardiomyocyte apoptosis in myopathic turkeys [39]. AMI or HF is associated with a decrease in the antiapoptotic Bcl-2 protein and an increase in proapoptotic Bax protein [40]. Our results further demonstrated that combined metoprolol and terbutaline prevented the changes in both Bcl-2 and Bax proteins in MI-induced heart failure. Additionally, we observed that combined metoprolol and terbutaline significantly reduced Bcl-2/Bax ratio. In the present study, by using TUNEL staining, which is the standard method for the evaluation of apoptosis, we found that metoprolol and terbutaline significantly inhibited the cell apoptosis and the combination therapy with metoprolol and terbutaline had more significant effect.

Furthermore, we found that combined use of metoprolol and terbutaline suppressed oxidative stress-mediated myocyte apoptosis by increasing GSH/GSSG, which further confirmed that β1-AR blocker and β2-AR agonist may play an important role in the antioxidant effect as well as in AMI. This is consistent with the previous rat study, which demonstrated that carvedilol could attenuate myocardial inflammation and decrease the severity of myocarditis by the antioxidant action [8].

Few studies found that β1-AR and β2-AR had significantly different signal transduction pathways [41]. β2-AR signal transduction pathways conclude both Gs-AC-PKA pathway and Gi-PI3K-AKT pathway. Therefore, activation of β2-AR to a certain extent can inhibit apoptosis and improve cardiac function [5, 42].

Additionally, our studies demonstrated that short-term exposure to PM2.5 contributed to aggravate cardiac function in myocardial infarction rats. The mortality rate decreased after treatment of β1-AR blocker and β2-AR agonist. Many recent studies suggested that long-term exposure to low concentration of PM2.5 might alter vasomotor tone and induce vascular inflammation or atherosclerosis, increased risk of ischemic disease, and death due to pulmonary and systemic oxidative stress [9, 11, 14, 43]. Short-term PM exposures may also trigger acute ischemic heart disease events [14] which may be related to inflammation and acute complications of atherosclerosis and, thus, lead to atherosclerotic plaque rupture, thrombosis, and precipitation of acute ischemic events [15].

In our study, significant reversal of cardiac remodeling and improvement of hemodynamic function were found in the rat model of AMI after treatment of β1-AR blocker and β2-AR agonist. Our results suggested that reduction of myocardial oxidative stress by β1-AR blocker and β2-AR agonist plays an important role in AMI or heart failure. Combining β1-AR blocker with β2-AR agonist is better than the use of β1-AR blocker or β2-AR agonist alone. We conclude that β1-AR blocker and β2-AR agonist might be important clinical approach in the treatment of heart failure. Particularly, β1-AR blocker and β2-AR agonist may decrease the mortality after exposure to PM2.5.


Conflict of Interests

The authors declare that they have no conflict of interests with anyone or with any other party for the publication of this paper.


References
1. Ma̧czewski M,Mackiewicz U. Effect of metoprolol and ivabradine on left ventricular remodelling and Ca2+ handling in the post-infarction rat heartCardiovascular ResearchYear: 200879142512-s2.0-4584908568618310678
2. Singh K,Communal C,Sawyer DB,Colucci WS. Adrenergic regulation of myocardial apoptosisCardiovascular ResearchYear: 20004537137192-s2.0-003397944210728393
3. Khan M,Mohsin S,Avitabile D,et al. β-adrenergic regulation of cardiac progenitor cell death versus survival and proliferationCirculation ResearchYear: 201311234764862-s2.0-8487341110723243208
4. Di Lisa F,Kaludercic N,Paolocci N. β2-adrenoceptors, NADPH oxidase, ROS and p38 MAPK: another “radical” road to heart failure?British Journal of PharmacologyYear: 20111625100910112-s2.0-7955147691121271996
5. Zhang Q,Xiang J,Wang X,et al. β2-adrenoceptor agonist clenbuterol reduces infarct size and myocardial apoptosis after myocardial ischaemia/reperfusion in anaesthetized ratsBritish Journal of PharmacologyYear: 20101606156115722-s2.0-7795406156620590644
6. Ahmet I,Morrell C,Lakatta EG,Talan MI. Therapeutic efficacy of a combination of a β1-adrenoreceptor (AR) blocker and β2-AR agonist in a rat model of postmyocardial infarction dilated heart failure exceeds that of a β1-AR blocker plus angiotensin-converting enzyme inhibitorJournal of Pharmacology and Experimental TherapeuticsYear: 200933111781852-s2.0-7034930840419587314
7. Ahmet I,Krawczyk M,Zhu W,et al. Cardioprotective and survival benefits of long-term combined therapy with β2 adrenoreceptor (AR) agonist and β1 AR blocker in dilated cardiomyopathy postmyocardial infarctionThe Journal of Pharmacology and Experimental TherapeuticsYear: 200832524914992-s2.0-4244913015318287209
8. Molenaar P,Christ T,Ravens U,Kaumann A. Carvedilol blocks β2- more than β1- adrenoceptors in human heartCardiovascular ResearchYear: 20066911281392-s2.0-2914452017016225854
9. Tonne C,Wilkinson P. Long-term exposure to air pollution is associated with survival following acute coronary syndromeEuropean Heart JournalYear: 20133417130613112-s2.0-8487727764523423735
10. Ying Z,Yue P,Xu X,et al. Air pollution and cardiac remodeling: a role for RhoA/Rho-kinaseAmerican Journal of Physiology—Heart and Circulatory PhysiologyYear: 20092965H1540H15502-s2.0-6614909337719286943
11. Madrigano J,Kloog I,Goldberg R,Coull BA,Mittleman MA,Schwartz J. Long-term exposure to PM2.5 and incidence of acute myocardial infarctionEnvironmental Health PerspectivesYear: 201312121921962-s2.0-8487334156723204289
12. Pope CA III,Burnett RT,Thun MJ,et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollutionThe Journal of the American Medical AssociationYear: 20022879113211412-s2.0-0037029043
13. Hoek G,Krishnan RM,Beelen R,et al. Long-term air pollution exposure and cardio-respiratory mortality: a reviewEnvironmental HealthYear: 2013121, article 432-s2.0-84878869536
14. Franchini M,Mannucci PM. Particulate air pollution and cardiovascular risk: short-term and long-term effectsSeminars in Thrombosis and HemostasisYear: 20093576656702-s2.0-7744914424720013533
15. Pope CA III,Muhlestein JB,May HT,Renlund DG,Anderson JL,Horne BD. Ischemic heart disease events triggered by short-term exposure to fine particulate air pollutionCirculationYear: 200611423244324482-s2.0-3384542960417101851
16. Hong YC,Lee JT,Kim H,Kwon HJ. Air pollution: a new risk factor in ischemic stroke mortalityStrokeYear: 2002339216521692-s2.0-003671521712215581
17. Wellenius GA,Schwartz J,Mittleman MA. Air pollution and hospital admissions for ischemic and hemorrhagic stroke among medicare beneficiariesStrokeYear: 20053612254925532-s2.0-3364470122216254223
18. Pekkanen J,Peters A,Hoek G,et al. Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease: the exposure and risk assessment for fine and ultrafine particles in ambient air (ULTRA) studyCirculationYear: 200210689339382-s2.0-003714365812186796
19. Gold DR,Litonjua AA,Zanobetti A,et al. Air pollution and ST-segment depression in elderly subjectsEnvironmental Health PerspectivesYear: 200511378838872-s2.0-2214446619616002377
20. Peters A,Döring A,Wichmann H,Koenig W. Increased plasma viscosity during an air pollution episode: a link to mortality?The LancetYear: 19973499065158215872-s2.0-0343765709
21. Salvi S,Blomberg A,Rudell B,et al. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteersAmerican Journal of Respiratory and Critical Care MedicineYear: 199915937027092-s2.0-003298504610051240
22. Rückerl R,Ibald-Mulli A,Koenig W,et al. Air pollution and markers of inflammation and coagulation in patients with coronary heart diseaseAmerican Journal of Respiratory and Critical Care MedicineYear: 200617344324412-s2.0-3244443355216293802
23. Pope CA III,Verrier RL,Lovett EG,et al. Heart rate variability associated with particulate air pollutionThe American Heart JournalYear: 19991385part 18908992-s2.0-0032716183
24. Gold DR,Litonjua A,Schwartz J,et al. Ambient pollution and heart rate variabilityCirculationYear: 200010111126712732-s2.0-003469659310725286
25. Li Y,Cao F,Liu F,Bai X,Lü Y. Effects of Shexiangbaoxin pills on the expression of cardiac α1- and β-adrenergic receptor subtypes in rat hearts with heart failure induced by myocardial infarctionChinese Medical JournalYear: 20121259155615622-s2.0-8486320897322800821
26. Wu Y,Yin X,Wijaya C,Huang M,McConnell BK. Acute myocardial infarction in ratsJournal of Visualized ExperimentsYear: 2011482-s2.0-84859241597
27. Emmerechts J,Alfaro-Moreno E,Vanaudenaerde BM,Nemery B,Hoylaerts MF. Short-term exposure to particulate matter induces arterial but not venous thrombosis in healthy miceJournal of Thrombosis and HaemostasisYear: 2010812265126612-s2.0-7864998743221029357
28. Wallenborn JG,McGee JK,Schladweiler MC,Ledbetter AD,Kodavanti UP. Systemic translocation of particulate matter-associated metals following a single intratracheal instillation in ratsToxicological SciencesYear: 20079812312392-s2.0-3444757689617434951
29. Lindley TE,Infanger DW,Rishniw M,et al. Scavenging superoxide selectively in mouse forebrain is associated with improved cardiac function and survival following myocardial infarctionAmerican Journal of Physiology-Regulatory Integrative and Comparative PhysiologyYear: 20092961R1R82-s2.0-58149509999
30. vanHoose L,Sawers Y,Loganathan R,et al. Electrocardiographic changes with the onset of diabetes and the impact of aerobic exercise training in the Zucker Diabetic Fatty (ZDF) ratCardiovascular DiabetologyYear: 20109, article 562-s2.0-77956841912
31. Zhang J,Lu J,Chen D,et al. Myocardial autophagy variation during acute myocardial infarction in rats: the effects of carvedilolChinese Medical JournalYear: 200912219237223792-s2.0-7035061610620079142
32. Qin F,Simeone M,Patel R. Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarctionFree Radical Biology and MedicineYear: 20074322712812-s2.0-3425087636417603936
33. Tao L,Gao E,Hu A,et al. Thioredoxin reduces post-ischemic myocardial apoptosis by reducing oxidative/nitrative stressBritish Journal of PharmacologyYear: 200614933113182-s2.0-3374903309016921396
34. Qin F,Lennon-Edwards S,Lancel S,et al. Cardiac-specific overexpression of catalase identifies hydrogen peroxide-dependent and-independent phases of myocardial remodeling and prevents the progression to overt heart failure in Gαq-overexpressing transgenic miceCirculation: Heart FailureYear: 2010323063132-s2.0-7795193269020018955
35. Wu H,Cai Y,Xin Z,Wang X,Yan S. Pure alumina bearings with cementless stems versus sandwich bearings with cemented stems in total hip arthroplastyChinese Medical JournalYear: 201212522442482-s2.0-8486294163622340553
36. Luo M,Bi Y,Xu Y. Effects of metoprolol on β1 adrenergic receptor polymorphism and receptor density in urban Chinese patients with heart failureChinese Medical JournalYear: 200712019172017232-s2.0-3534895959817935678
37. Liu WN,Fu KL,Gao HY,et al. β1 adrenergic receptor polymorphisms and heart failure: a meta-analysis on susceptibility, response to β-blocker therapy and prognosisPLoS ONEYear: 201277e376592-s2.0-84864012546
38. do Nascimento BC,Pereira SB,Ribeiro GS,Mesquita ET. Beta1-adrenergic receptor polymorphisms associated with atrial fibrillation in systolic heart failureArquivos Brasileiros de CardiologiaYear: 20129853843892-s2.0-8486603648522499333
39. Okafor CC,Perreault-Micale C,Hajjar RJ,et al. Chronic treatment with carvedilol improves ventricular function and reduces myocyte apoptosis in an animal model of heart failureBMC PhysiologyYear: 200331, article 62-s2.0-0642312547
40. Condorelli G,Morisco C,Stassi G,et al. Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the ratCirculationYear: 19999923307130782-s2.0-003356441910368127
41. Rehsia NS,Dhalla NS. Mechanisms of the beneficial effects of beta-adrenoceptor antagonists in congestive heart failureExperimental and Clinical CardiologyYear: 2010154e86e952-s2.0-7995256768721264074
42. Ahmet I,Lakatta EG,Talan MI. Pharmacological stimulation of β2-adrenergic receptors (β2AR) enhances therapeutic effectiveness of β1AR blockade in rodent dilated ischemic cardiomyopathyHeart Failure ReviewsYear: 20051042892962-s2.0-3364546886416583177
43. Pope CA III,Burnett RT,Thurston GD,et al. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of diseaseCirculationYear: 2004109171772-s2.0-034708614714676145

Article Categories:
  • Research Article


Previous Document:  Large Deletion in KCNQ1 Identified in a Family with Jervell and Lange-Nielsen Syndrome.
Next Document:  Long-term outcomes after dialysis-requiring acute kidney injury.