Document Detail

Effect of water on the thermo-physical properties of Reline: An experimental and molecular simulation based approach.
MedLine Citation:
PMID:  25277220     Owner:  NLM     Status:  Publisher    
Increasing applications of ionic liquids and their analogues, namely Deep Eutectic Solvents (DESs), requires further investigation into the effect of moisture content on the physico-chemical characteristics of these fluids. Although it is common practice to synthesize these fluids in a moisture-controlled environment, as moisture is generally considered to have an impact on their properties, there are no systematic studies on this. We herein examine the effects of water on Reline, a Type-III DES composed of urea and choline chloride. Experiments were performed to obtain the physical properties of aqueous Reline solution. We observed moderate changes in density, speed of sound, refractive index, and pH with increasing water fraction; however, the change in viscosity and conductivity was strong and exponential. In addition, molecular dynamics simulations were performed to analyze the intermolecular interactions of Reline and aqueous Reline solutions. The simulations primarily present the significance of urea-anion interaction to explain the low melting point of the DES. In the presence of water, the anion is preferentially hydrated as compared to urea or the cation. More interestingly, simulations help to classify the effects of water into different regimes. At low water fractions (<5%) the urea-urea interactions are enhanced, as is revealed through the hydrogen bond analysis. Beyond 25% water fractions, the components of Reline are individually hydrated and have high diffusivity, which is further reflected in the change in transport properties. The results presented herein provide valuable information on aqueous Reline solutions both in terms of experimental data and molecular insights, which in turn, we believe, might assist in developing further applications of Reline and other related DESs.
Dhawal Shah; Farouq S Mjalli
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-10-3
Journal Detail:
Title:  Physical chemistry chemical physics : PCCP     Volume:  -     ISSN:  1463-9084     ISO Abbreviation:  Phys Chem Chem Phys     Publication Date:  2014 Oct 
Date Detail:
Created Date:  2014-10-3     Completed Date:  -     Revised Date:  2014-10-4    
Medline Journal Info:
Nlm Unique ID:  100888160     Medline TA:  Phys Chem Chem Phys     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  What We Mean When We Talk About MRD in Myeloma. A Review of Current Methods. Part 1 of a Two-Part Se...
Next Document:  Outcome of cryoballoon ablation for atrial fibrillation : Medium-term follow-up from a single center...