Document Detail


Effect of silicate supplementation on the alleviation of arsenite toxicity in 93-11 (Oryza sativa L. indica).
MedLine Citation:
PMID:  23686790     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Chronic exposure to arsenic (As) in rice has raised many health and environmental problems. As reported, great variation exists among different rice genotypes in As uptake, translocation, and accumulation. Under hydroponic culture, we find that the Chinese wild rice (Oryza rufipogon; acc. 104624) takes up the most arsenic among tested genotypes. Of the cultivated rice, the indica cv. 93-11 has the lowest arsenic translocation factor value but accumulates the maximum concentration of arsenic followed by Nipponbare, Minghui 86, and Zhonghua 11. Higher level of arsenite concentration (50 μM) can induce extensive photosynthesis and root growth inhibition, and cause severe oxidative stress. Interestingly, external silicate (Si) supplementation has significantly increased the net photosynthetic rate, and promoted root elongation, as well as strongly ameliorated the oxidative stress by increasing the activities of antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and peroxidase in roots and/or leaves of 93-11 seedlings. Notably, 1.873 mM concentration of Si considerably decreases the total As uptake and As content in roots, but significantly increases the As translocation from roots to shoots. In contrast, Si supplementation with 1.0 mM concentration significantly increases the total As uptake and As concentrations in roots and shoots of 93-11 seedlings after 50 μM arsenite treatment for 6 days.
Authors:
Haichao Hu; Junting Zhang; Hong Wang; Ruochen Li; Fengshan Pan; Jian Wu; Ying Feng; Yeqing Ying; Qingpo Liu
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-5-19
Journal Detail:
Title:  Environmental science and pollution research international     Volume:  -     ISSN:  1614-7499     ISO Abbreviation:  Environ Sci Pollut Res Int     Publication Date:  2013 May 
Date Detail:
Created Date:  2013-5-20     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9441769     Medline TA:  Environ Sci Pollut Res Int     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
College of Agriculture and Food Science, Zhejiang A & F University, Lin'an Hangzhou, 311300, China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Perfluorinated alkylated substances in vegetables collected in four European countries; occurrence a...
Next Document:  Baicalein reduces ?-amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an...