Document Detail

Effect of neoadjuvant chemoradiation and postoperative radiotherapy on expression of heat shock protein 70 (HSP70) in head and neck vessels.
Jump to Full Text
MedLine Citation:
PMID:  21745403     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
BACKGROUND: Preoperative radiotherapy and chemotherapy in patients with head and neck cancer result in changes to the vessels that are used to construct microsurgical anastomoses. The aim of the study was to investigate quantitative changes and HSP70 expression of irradiated neck recipient vessels and transplant vessels used for microsurgical anastomoses.
METHODS: Of 20 patients included in this study five patients received neoadjuvant chemoradiation, another five received conventional radiotherapy and 10 patients where treated without previous radiotherapy. During surgical procedure, vessel specimens where obtained by the surgeon. Immunhistochemical staining of HSP70 was performed and quantitative measurement and evaluation of HSP70 was carried out.
RESULTS: Conventional radiation and neoadjuvant chemoradiation revealed in a thickening of the intima layer of recipient vessels. A increased expression of HSP70 could be detected in the media layer of the recipient veins as well as in the transplant veins of patients treated with neoadjuvant chemoradiation. Radiation and chemoradiation decreased the HSP70 expression of the intima layer in recipient arteries. Conventional radiation led to a decrease of HSP70 expression in the media layer of recipient arteries.
CONCLUSION: Our results showed that anticancer drugs can lead to a thickening of the intima layer of transplant and recipient veins and also increase the HSP70 expression in the media layer of the recipient vessels. In contrast, conventional radiation decreased the HSP70 expression in the intima layer of arteries and the media layer of recipient arteries and veins. Comparing these results with wall thickness, it was concluded, that high levels of HSP70 may prevent the intima layer of arteries and the media layer of vein from thickening.
Authors:
Frank Tavassol; Horst Kokemüller; Rüdiger Zimmerer; Nils-Claudius Gellrich; André Eckardt
Related Documents :
9546963 - Thoracic aortic aneurysm repair with endovascular stent-grafts.
17939363 - Ruptured aortic aneurysm in a coyote (canis latrans) from south carolina.
6981033 - Association of sex, physical size, and operative mortality after coronary artery bypass...
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2011-07-11
Journal Detail:
Title:  Radiation oncology (London, England)     Volume:  6     ISSN:  1748-717X     ISO Abbreviation:  Radiat Oncol     Publication Date:  2011  
Date Detail:
Created Date:  2011-08-01     Completed Date:  2012-04-09     Revised Date:  2013-06-28    
Medline Journal Info:
Nlm Unique ID:  101265111     Medline TA:  Radiat Oncol     Country:  England    
Other Details:
Languages:  eng     Pagination:  81     Citation Subset:  IM    
Affiliation:
Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hanover, Germany. Tavassol.Frank@mh-hannover.de
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Adult
Aged
Aged, 80 and over
Anastomosis, Surgical
Antineoplastic Agents / adverse effects
Combined Modality Therapy / methods*
Female
Gene Expression Regulation, Neoplastic*
HSP70 Heat-Shock Proteins / metabolism*
Head and Neck Neoplasms / blood,  metabolism*
Humans
Male
Middle Aged
Neoadjuvant Therapy / methods*
Phylogeny
Tunica Intima / radiation effects
Tunica Media / radiation effects
Veins / drug effects,  radiation effects
Chemical
Reg. No./Substance:
0/Antineoplastic Agents; 0/HSP70 Heat-Shock Proteins
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Radiat Oncol
ISSN: 1748-717X
Publisher: BioMed Central
Article Information
Download PDF
Copyright ©2011 Tavassol et al; licensee BioMed Central Ltd.
open-access:
Received Day: 10 Month: 3 Year: 2011
Accepted Day: 11 Month: 7 Year: 2011
collection publication date: Year: 2011
Electronic publication date: Day: 11 Month: 7 Year: 2011
Volume: 6First Page: 81 Last Page: 81
ID: 3146838
Publisher Id: 1748-717X-6-81
PubMed Id: 21745403
DOI: 10.1186/1748-717X-6-81

Effect of neoadjuvant chemoradiation and postoperative radiotherapy on expression of heat shock protein 70 (HSP70) in head and neck vessels
Frank Tavassol1 Email: Tavassol.Frank@mh-hannover.de
Horst Kokemüller1 Email: Kokemueller.Horst@mh-hannover.de
Rüdiger Zimmerer1 Email: Zimmerer.Ruediger@mh-hannover.de
Nils-Claudius Gellrich1 Email: Gellrich.Nils-Claudius@mh-hannover.de
André Eckardt1 Email: Eckardt.Andre@mh-hannover.de
1Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hanover, Germany

Background
Irradiation and vessels

The therapy of patients suffering from oral cancer could be recently improved by utilization of multimodal interdisciplinary regimes using a combination of surgery, chemo- and radiotherapy [1,2]. Extensive tissue defects following ablative tumor therapy do require adequate and functional reconstruction regardless of whether the patient received preoperative irradiation or not. During the last 20 years, the free vascularised tissue transfer became to be the "criterion standard" for reconstruction in head and neck cancers [3-6]. Large patient series with successful free flap transfer for head and neck reconstruction have been reported by many authors and demonstrated today's role as principal reconstructive procedure [5-10]. Since Guelinckx (1984) we know that irradiation of the recipient vessels in head and neck free flaps is leading to morphological changes [11]. Following studies confirm these results [12-14]. Different authors conclude, thus, although success is certainly possible when irradiated vessels are used for flap revascularization, there may be an increased risk of thrombosis, particularly in the head and neck [15,16]. Reviewing the current literature is leading to a different success rate of free flaps in irradiated patients ranging from 88% to nearly 100% [17-22]. Regarding the histological findings after irradiation, qualitative changes of the vessels such as hyalinosis of the intima and the media are described in literature [11,23]. Schultze-Mosgau et al. (2002) could show qualitative and quantitative histological changes to the recipient arteries, but not to the recipient veins following irradiation with 60-70 Gy. In contrast, neoadjuvant chemoradiation did not show changes to the recipient vessels [14].

Heat shock proteins (HSP)

HSP are found in all organisms and all cell types. They are the most phylogenetically conserved proteins known with respect to both structure and function [24]. Usually, HSP are expressed at low levels, and under normal physiological conditions, many members of the HSP family are involved in protein synthesis. When a cell is stressed, oligomeric complexes disassemble and polypeptides unfold. Under these conditions, the role of HSP is to reverse such changes and, if refolding becomes impossible, to potentially speed up the removal of such denatured proteins. Expression of HSP is induced even under nonstress conditions, including those of the cell cycle, development, and differentiation [24-26]. Regarding the literature, even radiation could induce stress proteins in vitro [27]. Hurwitz et al. (2010) could show that radiation therapy induces expression of HSP70 in patients with prostate cancer [28]. Furthermore, the expression of heat shock proteins is induced by anticancer drugs such cisplatin [29,30].

Aim of the study

The aim of the study was to investigate quantitative changes and HSP70 expression of irradiated neck recipient vessels and transplant vessels used for microsurgical anastomoses in free flaps in patients undergoing preoperative radiotherapy or neoadjuvant chemoradiation. The second aspect was to find out if HSP 70 might protect the transplant and recipient vessels.


Methods
Patients

The ethical approval was given by the local ethical committee. Of 20 patients included in this study (March 2004 - October 2006), 10 patients where treated without previous radiotherapy (group 1), five patients received conventional radiotherapy (59.4 - 72 Gy) (group 2) at least 22 months before surgery and another five patients received neoadjuvant chemoradiation 6 weeks before surgery (group 3, Table 1). The neoadjuvant chemoradiation protocol included cisplatin 12.5 mg/m2 plus 40 Gy radiation or paclitaxel 40 mg/m2/carboplatin AUC 1.5 plus 40 Gy radiation [1,2]. During surgical procedure, 5-10 mm long vessel specimens where obtained by the surgeon. In each case a transplant artery and transplant vein from the raised flap and a recipient artery (superior thyroid or facial artery) and a recipient vein (facial vein) from the neck were achieved.

Immunhistochemistry

Serial 3-mm sections were deparaffinized, rehydrated, washed and, treated with a solution of 2% horse serum, 0.1% bovine serum albumin (Sigma Corporation, Steinheim, Germany), and 0.1% sodium acid in 150 mmol/l phosphate-buffered saline (PBS; pH 7.2) for 15 min to block nonspecific antibody-binding. A polyclonal rabbit anti-HSP70 antibody (Dako, Carpinteria, CA, USA), specific to HSP from Escherichia coli, which shares more than 48% sequence homology with mammalian HSP70 was the first layer. The optimal dilution of anti-HSP antibody (1:250) was determined by titration. The selected sections were incubated with this antibody for 120 min at room temperature (RT). The second layer, a biotin-conjugated goat antirabbit immunoglobulin (Oncogene, San Diego, CA USA) diluted 1:200 in PBS was incubated for 30 min at RT. The third layer was an avidin-biotin-horseradish peroxidase complex (Dako) diluted 1:50 in PBS. Incubation was, as before, 30 min at RT. Sections were washed for 10 min in 2 changes of PBS between each layer. The color reaction was developed with a solution consisting of 0.05% 3,30- diaminobenzidine tetrahydrochloride (Sigma, St Louis, MO, USA), 0.03% nickel chloride (Sigma), and 0.01% hydrogen peroxide in 48 mmol/l Tris-HCL, pH 7.6 (Sigma). Counterstaining was carried out with Mayer's hematoxylin [24,26].

Quantitative evaluation

For quantitative histomorphometric analysis, cross-sections were obtained from the middle third of the vessels and analyzed with the image processing and analysis program analysis 3.1® (Soft Imaging System, Münster, Germany). The measurement included the vessel wall thickness differed by the intima and the media and was carried out three times by two examiners. The mean values thus obtained were used for the following analysis.

Evaluation of HSP 70 expression

Light microscopy and analysis 3.1®, an image processing and analysis program, were used for evaluating HSP70 expression. Respectively the intima, media or adventitia region was defined as the region of interest (ROI) and the percentage of HSP70-positive staining was analyzed [26].

Statistical analysis

Statistical analysis was performed on a SPSS 18 statistical package. The specimens were compared for differences in percentage of HSP 70 staining and thickness of the intima and media part of the vessels respectively. One way repeated measures Analysis of Variance was used to detect differences and correlations at p values less than 0.05.


Results
Clinical data

There where three women (15%) and 17 men included in this study. The mean age of all patients was 55.5 years (range 30 to 84, median 55, SEM 3.69). The mean age of group 1 (no irradiation) was 59.2 years (median 57.5), the mean of group 2 (conventional irradiation, 59.4-72 Gy) was 52 years (median 57) and of group 3 (neoadjuvant chemoradiation, 40 Gy) 51.6 years (median 55). The mean duration between conventional radiation (group2) and surgical treatment was 70.2 months (median 80). Thirteen patients stated to be smokers (65%). Reconstruction was performed by using the radial forearm flap in 12 cases (60%), latissimus dorsi flap in six cases and each one by fibula flap and lateral arm flap (5% each, table 1). All flaps were successful.

Vessel wall thickness

The results of the vessel wall thickness are summarized in Figure 1A-D and table 2. The wall thickness of the vessels showed significant thickened intima layer of transplant and recipient veins in group 3 (neoadjuvant chemoradiation, Figure 1A). Conventional radiation (group2) led to thickening of the media layer of the recipient veins (Figure 1B). Regarding the arteries, conventional radiation (group2) and neoadjuvant chemoradiation (group3) revealed in a thickening of the intima layer of recipient vessels (Figure 1C). The media layer of the arteries led to a thickening of the recipient vessel in group3 (neoadjuvant chemoradiation) with a contemporary thinning of the transplant vessels in group2 (conventional radiation) and group3 (neoadjuvant chemoradiation, Figure 1D).

HSP70 expression

The results of HSP70 expression are presented in Figure 2A-D and table 2. A increased expression of HSP70 could be detected in the media layer of the recipient veins as well as in the transplant veins of patients treated with neoadjuvant chemoradiation (group3) (Figure 2B, Figure 3A+B). Radiation (group2) and chemoradiation decreased the HSP70 expression of the intima layer in recipient arteries (Figure 2C). Regarding the arteries, an enhancement of HSP70 expression was limited to the media layer of the recipient vessels (group3, Figure 3D). Conventional radiation (group2) led to a decrease of HSP70 expression in the media layer of recipient arteries (Figure 2D, Figure 3C).


Discussion

Today, free vascularised tissue transfer is the "criterion standard" for tissue reconstruction after ablative tumour therapy in head and neck oncology [3-6]. Many patients had been treated successfully in the last two decades [5-9]. For successful free tissue transfer, the quality of the transplant and the recipient vessels are desirable. Survival of free flaps is dependent on adequate blood supply. Pre-existing changes in transplant and recipient arteries may cause technical difficulties and must be regarded as additional factors contributing to graft failure [31,32]. Histopathologic damage of the recipient vessels in head and neck microsurgery can be caused by different reasons. Arteriosclerotic changes were often seen in patients suffering from head and neck cancer [31]. However, in many cases surgical treatment is not sufficient and adjuvant therapy might be necessary [1,2]. In these cases neoadjuvant chemoradiation therapy is used to increase local tumour control and to decrease the incidence of distant metastases. Nevertheless, a preoperative radiation is known to lead to histopathological changes in recipient vessels [12-14,14]. These morphological changes include hyalinosis of the intima and media layer and may increase the risk of thrombosis [15,16]. The current literature is describing different success rates of free flaps in irradiated patients ranging from 88% up to 100% [17-22]. A previous study from our department could demonstrate that neoadjuvant chemoradiation influenced the outcome of free vascularised tissue transfer while the circumstance if a patient is a smoker or not has no impact to success [6]. Therefore we did not discriminate between smokers and non smokers. To distinguish a possible effect of radiation from the influence of smoking in histomorphometry, we decided to harvest specimens from the transplant. The data of the present study showed different changes of the vessels influenced by preoperative radiation or chemoradiation therapy. A thickened intima layer of the recipient arteries in patients undergoing conventional radiation (group2, 59.4-72 Gy) or neoadjuvant chemoradiation (group3, 40 Gy) could be demonstrated. These findings are partially in contrast to the findings of Schultze-Mosgau et al. (2002), who described changes only after conventional radiation but not after chemoradiation [14]. The study of Schlutze-Mosgau et al. included a total of 93% smokers while our patient database contains only 60% smokers. Nevertheless, the chemoradation group (group 3) included 100% smokers is thus comparable. Another differing result is concerning the veins. We could demonstrate an enlargement of the intima layer of both, the transplant and the recipient vein. This could indicate that anticancer drugs may affect the veins especially considering that conventional radiation has no influence on the intima layer. Only the media layer is influenced by conventional radiation. We think this could be a long-time effect touching the recipient veins.

The second aspect of our study is concerning the HSP70 expression in vessels after radiation or chemoradiation. However, it is known, that radiation therapy or anticancer drugs can induce the expression of HSP70 [27-30,33,34]. Our findings can be concluded in three major results: 1. chemoradiation increases the HSP70 expression of the media layer in transplant and recipient veins while conventional radiation decreases the expression of HSP70 in the recipient vein. 2. conventional radiation and chemoradiation decreases HSP70 expression in the intima layer of recipient arteries, and 3. conventional radiation decreases HSP70 expression in the media layer of the recipient artery. Comparing the results of the intima layer of the arteries between HSP70 expression and wall thickness, it seems that low expression of HSP70 correlates with thickened intima layer. This applies to be the same in the media layer of the recipient veins. However, regarding these results it has to be considered that the sample power of this study is low and further study may be helpful to confirm these results.


Conclusions

In the present study we could demonstrate, that radiation therapy is affecting the histomorphology of recipient veins of patients suffering from head and neck cancer. Although, there was no failure in our patients, the thickening of the intima layer in recipient arteries may influence success of free vascularised tissue transfer [17-22]. However, anticancer drugs can lead to thickening of the intima layer of transplant and recipient veins. HSP70 expression is decreased by conventional radiation in the intima layer of arteries and the media layer of arteries and veins. Anticancer drugs by contrast increase the HSP70 expression in the media layer of the recipient vessels. Comparing these results with wall thickness, it was concluded, that there might be some coherence between high levels of HSP70 expression and the prevention of thickening of the intima layer of arteries and the media layer of vein from.


Competing interests

The authors declare that they have no competing interests.


Authors' contributions

FT, HK, RZ, NCG and AE conceived of the study and participated in its design and coordination. FT drafted the manuscript, carried out the immunohistochemistry and performed the statistical analysis. All authors read and approved the final manuscript.


Funding

The article processing charges are funded by the Deutsche Forschungsgemeinschaft (DFG), "Open Acess Publizieren".


References
Eckardt A,Rades D,Rudat V,Hofele C,Dammer R,Dietl B,Wildfang I,Karstens JH,Prospective phase II study of neoadjuvant radiochemotherapy in advanced operable carcinoma of the mouth cavity. 3-year outcomeMund Kiefer GesichtschirYear: 2002611721 German. 10.1007/s10006-002-0370-y12017874
Eckardt A,Wegener G,Karstens JH,[Preoperative radiochemotherapy of advanced resectable cancer of the oral cavity with cisplatin vs paclitaxel/carboplatin. Analysis of two multimodality treatment concepts]Mund Kiefer GesichtschirYear: 200610306 German. 10.1007/s10006-005-0659-816365743
Harashina T,Analysis of 200 free flapsBr J Plast SurgYear: 19884133610.1016/0007-1226(88)90141-53345404
Schusterman MA,Miller MJ,Rece GP,Kroll S,Marchi M,Goepfert H,A single center's experience with 308 free flaps for repair of head and neck cancer defectsPlast Reconstr SurgYear: 19949347288115501
Eckardt A,Fokas K,Microsurgical reconstruction in the head and neck region: an 18-year experience with 500 consecutive casesJ Craniomaxillofac SurgYear: 20033119720112914703
Eckardt A,Meyer A,Laas U,Hausamen JE,Reconstruction of defects in the head and neck with free flaps: 20 years experienceBr J Oral Maxillofac SurgYear: 200745111510.1016/j.bjoms.2005.12.01216464523
Jones NF,Johnson JT,Shestak KC,Myers EN,Swartz WM,Microsurgical reconstruction of the head and neck: interdisciplinary collaboration between head and neck surgeons in 305 casesAnn Plast SurgYear: 199636374310.1097/00000637-199601000-000088722982
Amarante J,Reis J,Costa-Ferreira A,Malheiro E,Silva A,Head and neck reconstruction: a review of 117 casesEur J Plast SurgYear: 20002340441210.1007/s002380000203
Rosenthal EL,Dixon SF,Free flap complications: when is enough, enough?Curr Opin Otolaryngol Head Neck SurgYear: 20031123623910.1097/00020840-200308000-0000314515069
Nakatsuka T,Harii K,Asato H,Takushima A,Ebihara S,Kimata Y,Yamada A,Ueda K,Ichioka S,Analytic review of 2372 free flap transfers for head and neck reconstruction following cancer resectionJ Reconstr MicrosurgYear: 20031936336814515225
Guelinckx PJ,Boeckx WD,Fossion E,Gruwez JA,Scanning electron microscopy of irradiated recipient blood vessels in head and neck free flaps.Plast Reconstr SurgYear: 1984742172610.1097/00006534-198408000-000086463146
Shibahara T,Schmelzeisen R,Noma H,Histological changes in vessels used for microvascular reconstruction in the head and neckJ Craniomaxillofac SurgYear: 19962424288707938
Schultze-Mosgau S,Erbe M,Keilholz L,Radespiel-Tröger M,Wiltfang J,Minge N,Neukam FW,Histomorphometric analysis of irradiated recipient vessels and transplant vessels of free flaps in patients undergoing reconstruction after ablative surgeryInt J Oral Maxillofac SurgYear: 200029112810.1016/S0901-5027(00)80007-710833147
Schultze-Mosgau S,Grabenbauer GG,Wehrhan F,Radespiel-Tröger M,Wiltfang J,Sauer R,Rödel F,[Histomorphological structural changes of head and neck blood vessels after pre- or postoperative radiotherapy]Strahlenther OnkolYear: 200217829930610.1007/s00066-002-0953-412122785
Gürlek A,Miller MJ,Amin AA,Evans GR,Reece GP,Baldwin BJ,Schusterman MA,Kroll SS,Robb GL,Reconstruction of complex radiation-induced injuries using free-tissue transferJ Reconstr MicrosurgYear: 1998143374010.1055/s-2007-10001879714040
Coleman IL,Management of radiation-induced soft-tissue injury to the head and neckClin Plast SurgYear: 1993204915058324988
Aitasalo K,Relander M,Virolainen E,Microvascular free tissue transfers after preoperative irradiation in head and neck reconstructionsActa OtolaryngolYear: 199752924750
Aitasalo K,Relander M,Virolainen E,The success rate of free flaps after preoperative irradiation in head and neck reconstructionAnn Chir GynaecolYear: 19978631179474425
Evans GR,Schusterman MA,Kroll SS,Miller MJ,Reece GP,Robb GL,Ainslie N,The radial forearm free flap for head and neck reconstruction: a reviewAm J SurgYear: 19941684465010.1016/S0002-9610(05)80096-07977970
Jose B,Banis J,Flynn M,Lindberg R,Spanos WJ Jr,Paris K,Rohm J,Irradiation and free tissue transfer in head and neck cancerHead NeckYear: 199152136
Keidan RD,Kusiak JF,Complications following reconstruction with the pectoralis major myocutaneous flap: the effect of prior radiation therapy.LaryngoscopeYear: 1992102521410.1288/00005537-199205000-000091573948
Kroll SS,Schusterman MA,Reece GP,Miller MJ,Evans GR,Robb GL,Baldwin BJ,Choice of flap and incidence of free flap successPlast Reconstr SurgYear: 1996984596310.1097/00006534-199609000-000158700982
Followill DS,Travis EL,Differential expression of collagen types I and III in consequential and primary fibrosis in irradiated mouse colonRadiat ResYear: 19951443182810.2307/35789527494876
Tavassol F,Starke OF,Völker B,Kokemüller H,Eckardt A,Heat-shock protein expression and topical treatment with tacrolimus in oral lichen planus: an immunohistochemical studyInt J Oral Maxillofac SurgYear: 20083766910.1016/j.ijom.2007.06.01617822876
Morimoto RI,Cells in stress: transcriptional activation of heat shock genesScienceYear: 199325914091010.1126/science.84516378451637
Tavassol F,Starke OF,Kokemüller H,Wegener G,Müller-Tavassol CC,Gellrich NC,Eckardt A,Prognostic significance of heat shock protein 70 (HSP70) in patients with oral cancerHead Neck OncolYear: 20112310
Gehrmann M,Schilling D,Molls M,Multhoff G,Radiation induced stress proteinsInt J Clin Pharmacol TherYear: 201048492320557857
Hurwitz MD,Kaur P,Nagaraja GM,Bausero MA,Manola J,Asea A,Radiation therapy induces circulating serum Hsp72 in patients with prostate cancerRadiother OncolYear: 201095350810.1016/j.radonc.2010.03.02420430459
At-Assa S,Porcher JM,Kretz-Remy C,Velarde G,Arrigo AP,Lambre C,Induction of the hsp70 Gene Promoter by Various Anticancer DrugsToxicol In VitroYear: 199913651510.1016/S0887-2333(99)00032-620654530
García-Berrocal JR,Nevado J,González-García JA,Sánchez-Rodríguez C,Sanz R,Trinidad A,España P,Citores MJ,Ramírez-Camacho R,Heat shock protein 70 and cellular disturbances in cochlear cisplatin ototoxicity modelJ Laryngol OtolYear: 201012459960910.1017/S002221511000049620307356
Alberdas JL,Shibahara T,Noma H,Histopathologic damage to vessels in head and neck microsurgeryJ Oral Maxillofac SurgYear: 200361191610.1053/joms.2003.5003412618995
de Bree R,Quak JJ,Kummer JA,Simsek S,Leemans CR,Severe atherosclerosis of the radial artery in a free radial forearm flap precluding its useOral OncolYear: 2004409910210.1016/S1368-8375(03)00133-714662422
Zhou H,Kato A,Yasuda H,Odamaki M,Itoh H,Hishida A,The induction of heat shock protein-72 attenuates cisplatin-induced acute renal failure in ratsPflugers ArchYear: 20034461162412690470
Jakubowicz-Gil J,Paduch R,Gawron A,Kandefer-Szerszen M,The effect of cisplatin, etoposide and quercetin on Hsp72 expressionPol J PatholYear: 200253133712476615

Figures

[Figure ID: F1]
Figure 1 

Vessel wall thickness: patients without irradiation (group 1), patients with conventional irradiation (59.4-72 Gy, group 2) and patients treated with neoadjuvant chemoradiation (40 Gy and cisplatin or carboplatin and paclitaxel, group3). Intima of the veins (A, *; + p < 0.05 vs. group1 and group 2), media of the veins (B, * p < 0.05 vs. group 3), intima of the arteries (C, * p < 0.05 vs. group1, + p < 0.05 vs. group1 and group3) and media of the arteries (D, + p < 0.05 vs. group3, * p < 0.05 vs. group2). (black bars = transplant vessels; white bars = recipient vessels. Means and ± SEM).



[Figure ID: F2]
Figure 2 

Percentage of HSP70 expression: patients without irradiation (group 1), patients with conventional irradiation (59.4-72 Gy, group 2) and patients treated with neoadjuvant chemoradiation (40 Gy and cisplatin or carboplatin and paclitaxel, group3). Intima of the veins (A, * p < 0.05 vs. group1 and group 2), media of the veins (B, * p < 0.05 vs. group 2, + p < 0.05 vs. group 1 and #p < 0.05 vs. group1 and group2.), intima of the arteries (C, * p < 0.05 vs. group2 and group3) and media of the arteries (D, + p < 0.05 vs. group2, * p < 0.05 vs.group1 and group2). (black bars = transplant vessels; white bars = recipient vessels. Means and ± SEM).



[Figure ID: F3]
Figure 3 

Expression of heat shock protein (HSP) 70 in vessels of a patient treated with neoadjuvant chemoradiation: transplant vein (A), recipient vein (B), transplant artery (C) and recipient artery (D). (*) thickened intima;



Tables
[TableWrap ID: T1] Table 1 

Clinical data from patients included in the study


case No. age gender pTNM radiation dose (Gy) time between radiation and surgery (months) donor site chemotherapy neo adjuvant therapy smoker
1 49 m pT2 pN1 no radiation ------ radial forearm flap ----- yes
2 74 m pT4a pN2b no radiation ------ radial forearm flap ----- no
3 51 m pT4a pN0 no radiation ------ fibula flap ----- yes
4 84 f pT2 pN0 no radiation ------ radial forearm flap ----- no
5 69 f pT4 pN2 no radiation ----- radial forearm flap ----- no
6 46 m pT2 pN0 no radiation ------ radial forearm flap ----- yes
7 65 m pT4 pN0 no radiation ----- latissimus dorsi flap ----- yes
8 44 m pT1 pN0 no radiation ----- radial forearm flap ----- yes
9 64 m pT1 pN0 no radiation ----- radial forearm flap ----- yes
10 46 m pT2 pN1 no radiation ----- lateral arm flap ----- no
11 55 f ypT1 pN0 40 1,5 radial forearm flap carboplatin + taxol yes yes
12 48 m ypT1 pN0 40 1,5 latissimus dorsi flap carboplatin + taxol yes yes
13 43 m ypT1 ypN1 40 1,5 radial forearm flap cisplatin/5-FU yes yes
14 55 m ypT1 ypN0 40 1,5 radial forearm flap carboplatin + taxol yes yes
15 57 m ypT1 ypN1 40 1,5 latissimus dorsi flap cisplatin/5-FU yes yes
16 57 m pT4 pN3 60 108 radial forearm flap - yes
17 64 m pT4 pN1 60 120 latissimus dorsi flap - no
18 30 m pT2 pN2b 59.4 22 latissimus dorsi flap - no
19 51 m pT4 N2b 61.2 20 latissimus dorsi flap - yes
20 58 m pT4 N2a 72 81 radial forearm flap - no

[TableWrap ID: T2] Table 2 

Original data (mean ± SEM) for vessel wall thickness and HSP 70 expression (p < 0.05): patients without irradiation (group 1), patients with conventional irradiation (59.4-72 Gy, group 2) and patients treated with neoadjuvant chemoradiation (40 Gy and cisplatin or carboplatin and paclitaxel, group3)


group 1 group 2 group 3
wall thickness [μm] transplant recipient transplant recipient transplant recipient

intima of veins 18,6 ± 0,7 18,5 ± 0,6 21,0 ± 0,8 22,8 ± 4,8 45,6 ±4,0 43,1 ±6,1
media of veins 184,7 ±6,3 212,1 ±10,6 121,8 ± 3,9 289,6 ± 10,5 190,9 ± 13,2 200,5 ±9,3
intima of arteries 30,6 ± 2,0 32,8 ± 2,8 53,1 ± 2,8 72,5 ± 1,4 31,2 ± 3,2 77,1 ± 2,8
media of arteries 439,8 ± 19,6 323,6 ± 11,6 423,9 ±3,0 262,0 ±13,2 283,8 ± 13,5 405,5 ± 7,14

HSP70 expression [%]

intima of veins 2,04 ± 0,18 3,06 ± 0,14 4,22 ± 0,14 2,54 ± 0,44 2,27 ± 0,15 2,92 ± 0,54
media of veins 2,42 ± 0,22 4,52 ± 0,21 2,46 ± 0,18 1,00 ± 0,05 4,55 ± 0,55 8,38 ± 0,94
intima of arteries 0,19 ± 0,01 1,56 ± 0,24 0,75 ± 0,23 0,77 ± 0,09 0,60 ± 0,12 0,35 ± 0,23
media of arteries 0,51 ± 0,07 2,41 ± 0,15 0,14 ± 0,01 0,32 ± 0,02 0,81 ± 0,19 4,41 ± 0,41


Article Categories:
  • Research


Previous Document:  Optimizing the two-step floating catchment area method for measuring spatial accessibility to medica...
Next Document:  A standardized scoring method for the copy of cube test, developed to be suitable for use in psychia...