Document Detail

Effect of Substituents on the Preferred Modes of One-Electron Reductive Cleavage of N-Cl and N-Br Bonds.
MedLine Citation:
PMID:  23282473     Owner:  NLM     Status:  Publisher    
In this study, we investigate the effect of substituents in determining the modes of one-electron reductive cleavage of X-NRR' (X = Cl and Br) molecules. We achieve this through comparison of the calculated gas-phase electron affinities (EAs) and aqueous-phase one-electron reduction potentials (E°'s) for a range of nitrogen-centered radicals ((•)NRR') with the corresponding EA and E° values for (•)Cl and (•)Br. The gas-phase EAs have been obtained using the benchmark-quality W1w thermochemical protocol, whereas E° values have been obtained by additionally applying free energy of solvation corrections, obtained using the conductor-like polarizable continuum (CPCM) model. We find that the N-halogenated derivatives of amines and amides should generally cleave in such a way as to afford (•)NRR' and X(-). For the N-halogenated imides, on the other hand, the N-brominated derivatives are predicted to produce (•)Br in solution, whereas the N-chlorinated derivatives again would give Cl(-). Importantly, we predict that N-bromouracil is likely to afford (•)Br. This may have important implications in terms of inflammatory-related diseases, because (•)Br may damage biomolecules such as proteins and DNA. To assist in the determination of the gas-phase EAs of larger (•)NRR' radicals, not amenable to investigation using W1w, we have evaluated the performance of a wide range of lower-cost theoretical methods. Of the standard density functional theory (DFT) procedures, M06-2X, τ-HCTHh, and B3-LYP show good performance, with mean absolute deviations (MADs) from W1w of 4.8-6.8 kJ mol(-1), whereas ROB2-PLYP and B2-PLYP emerge as the best of the double-hybrid DFTs (DHDFTs), with MADs of 2.5 and 3.0 kJ mol(-1), respectively. Of the Gn-type procedures, G3X and G4 show very good performance (MADs = 2.4 and 2.6 kJ mol(-1), respectively). The G4(MP2)-6X+ procedure performs comparably, with an MAD of 2.7 kJ mol(-1), with the added advantage of significantly reduced computational expense.
Robert J O'Reilly; Amir Karton; Leo Radom
Related Documents :
24579573 - Suppressing the loss of ultracold molecules via the continuous quantum zeno effect.
23597133 - Three-dimensional ab initio potential energy surface for h-co(x (2) a').
9056023 - Direct evidence for uptake of intact liposomes encapsulating silver sulfadiazine by cul...
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-3
Journal Detail:
Title:  The journal of physical chemistry. A     Volume:  -     ISSN:  1520-5215     ISO Abbreviation:  J Phys Chem A     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-1-3     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9890903     Medline TA:  J Phys Chem A     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
School of Chemistry and ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, University of Sydney , Sydney, NSW 2006, Australia.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  TEM in the treatment of recurrent rectal cancer in elderly.
Next Document:  Regulating the Regulators: microRNA and Asthma.