Document Detail

Ectopic blood supply of hepatocellular carcinoma as depicted by angiography with computed tomography: associations with morphological features and therapeutic history.
Jump to Full Text
MedLine Citation:
PMID:  23967266     Owner:  NLM     Status:  In-Data-Review    
OBJECTIVE: To investigate the associations of ectopic blood supply of hepatocellular carcinoma (HCC) with its morphological features and therapeutic history.
METHODS: Three hundred and six patients with 373 HCC lesions were enrolled in this study, and underwent biphasic contrast-enhanced scans on a 64-section MDCT. The anatomy of ectopic blood supply, morphological characteristics of HCC including the size, location and pseudocapsule, and history of transcatheter arterial chemoembolization (TACE) therapy were quantitively assessed and statistically analyzed.
RESULTS: Ectopic blood supply was found in 30.8% (115/373) lesions. The ectopic arteries were predominantly composed of inferior phrenic artery (86/115) followed by left and right gastric artery (25/115). Tumor size, location, status of pseudocapsule, and history of TACE therapy could impact the origination of ectopic arteries (all p<0.05).
CONCLUSION: The ectopic feeding arteries of HCC predominantly composed of the perihepatic arteries are associated with the morphological features of the tumor and therapeutic history.
Guang-Wen Chen; Bin Song; Zhen-Lin Li; Yuan Yuan
Related Documents :
24040436 - Inflammatory thoracic aortic aneurysm (lymphoplasmacytic thoracic aortitis): a 13-year-...
8270086 - False aneurysm formation of the right common femoral artery: a rare complication of a s...
23116106 - Recent valves used for transluminal implantation in patients with aortic valve stenosis.
24091096 - The shortfall in long-term survival of patients with repaired thoracic or abdominal aor...
8485746 - Percutaneous thrombectomy of the acutely thrombosed dialysis graft: in vitro evaluation...
25282246 - Giant aneurysm of right coronary artery fistula into left ventricle coexisting with non...
Publication Detail:
Type:  Journal Article     Date:  2013-08-15
Journal Detail:
Title:  PloS one     Volume:  8     ISSN:  1932-6203     ISO Abbreviation:  PLoS ONE     Publication Date:  2013  
Date Detail:
Created Date:  2013-08-22     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101285081     Medline TA:  PLoS One     Country:  United States    
Other Details:
Languages:  eng     Pagination:  e71942     Citation Subset:  IM    
Department of Radiology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China ; Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): PLoS One
Journal ID (iso-abbrev): PLoS ONE
Journal ID (publisher-id): plos
Journal ID (pmc): plosone
ISSN: 1932-6203
Publisher: Public Library of Science, San Francisco, USA
Article Information
Download PDF
Copyright: 2013 Chen et al
Received Day: 30 Month: 4 Year: 2013
Accepted Day: 7 Month: 7 Year: 2013
collection publication date: Year: 2013
Electronic publication date: Day: 15 Month: 8 Year: 2013
Volume: 8 Issue: 8
E-location ID: e71942
PubMed Id: 23967266
ID: 3744506
Publisher Id: PONE-D-13-18037
DOI: 10.1371/journal.pone.0071942

Ectopic Blood Supply of Hepatocellular Carcinoma as Depicted by Angiography with Computed Tomography: Associations with Morphological Features and Therapeutic History Alternate Title:Ectopic Blood Supply of Hepatic Carcinoma on CT
Guang-wen Chen12
Bin Song2*
Zhen-lin Li2
Yuan Yuan2
Jiani Huedit1 Role: Editor
1Department of Radiology, Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
2Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Wayne State University, United States of America
Correspondence: * E-mail:
[conflict] Competing Interests: The authors declared that no competing interests exist.
Contributed by footnote: Conceived and designed the experiments: GC BS ZL YY. Performed the experiments: GC BS ZL YY. Analyzed the data: GC BS. Contributed reagents/materials/analysis tools: GC BS. Wrote the paper: GC BS.


Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and is responsible for more than 500,000 deaths every year globally [1]. Radical excision is the ideal method for curing HCC. Unfortunately, the majority of tumors are in the intermediate or advanced stage at the time of diagnosis, leading patients to receive palliative therapy rather than radical excision. Transcatheter arterial chemoembolization (TACE) is an important therapeutic alternative for unresectable HCC [2], [3]. To successfully perform TACE, the feeding arteries of HCC including hepatic artery (HA) and ectopic perihepatic arteries should be evaluated before treatment [4], [5].

Previous studies using digital subtraction angiography (DSA) have found that perihepatic arteries such as internal mammary artery (IMA), intercostals artery (ICA), inferior phrenic artery (IPA), gastric artery (GA), superior mesenteric artery (SMA), gastro duodenal artery (GDA), cystic artery (CA), renal artery (RA), and also lumbar artery (LA) can supply HCC lesions [6][12]. Although DSA is considered as the gold standard modality for assessing ectopic blood supply of HCC, its application is limited due to the invasivenese, the cost expense and also the inability to demonstrate all blood vessels in an examination. In recent years, multidetector row computed tomography angiography (MDCTA) has been applied in a wide variety of vascular diseases of the head, thorax, coronary arteries and abdomen [13][16]. MDCTA can also be used for displaying hepatic and perihepatic vessels [17][21]. In addition, previous findings showed that MDCTA could depict most of the tumor feeding vessels from the intercostal arteries in patients with HCC. MDCTA was also suggested to be conducted for any tumors to locate the feeding vessel before chemoembolization [17], [18]. However, it needs to be confirmed whether the morphological features of HCC and the therapeutic history can affect formation of the ectopic supply.

Thus, we performed this retrospective study to evaluate the anatomy of ecoptic blood supplies of HCC by MDCTA prior to performing TACE, and determine whether the morphological features of HCC and the therapeutic history could affect the occurrence of ectopic feeding arteries.

Materials and Methods
Ethics Statement

This consent procedure was approved by the ethics committee of Sichuan Provincial People’s Hospital and West China Hospital of Sichuan University. Obtaining MDCT of 310 patients with HCC was approved by the Institutional Review Board of the Sichuan Provincial People’s Hospital and West China Hospital of Sichuan University. Written informed consent was obtained from each of the 310 patients prior to the study.


From July 2009 to December 2011, 310 consecutive patients with HCC underwent biphasic contrast-enhanced MDCT scans. Of these patients, 4 were abandoned due to the poor image data quality to perform MDCTA and the remaining 306 patients were recruited into our study. The enrolled patients included 197 males and 109 females, and the mean age was 46.3±13.2 years (range from 28–71 years).The time between MDCTA and pathological examination was 1 week to 30 months. The diagnosis were confirmed by pathological examination using fine needle aspiration biopsy in 234 patients, or typical CT features based on the American Association for Study of Liver Diseases (AASLD) guidelines [22] and serum alpha-fetal protein (AFP) in the remaining 72 patients.

CT Scanning

All patients were scanned on a 64-section MDCT (Philips Brilliance, Philips Medical Systems, Best, and the Netherlands). Before scanning, patients were required to drink 800 to 1,000 ml warm water to completely fill the stomach and the upper abdominal intestine. All patients underwent craniocaudal scanning in the supine position during a single breath hold. The scanning area was from pulmonary hilum level to iliac crest level. A non-contrast upper abdominal scan was performed initially to confirm the location of HCC. Subsequently, a dose of 1.5 ml per kg body weight nonionic contrast material with a concentration of 370 mg of iodine per milliliter (iopamidol 370, Bracco, Milan, Italy) was administered intravenously via the right antecubital vein through a 19-gauge catheter at a rate of 4–5 mL/sec by using an automated injector (Stellant CT Injection Systems, MEDRAD INC, Indianola, USA). A 10 ml saline flush was followed immediately. To perform the optimal arterial phase MDCTA scans, an automatic bolus-triggering software program was systematically applied with a circular region of interest positioned within abdominal aorta above the level of bifurcation of the celiac artery, and the threshold for triggering data acquisition was preset at 100 HU to determine the scanning delay for arterial phase imaging. That is to say, this arterial phase imaging was performed approximately 25–30 sec after the beginning of contrast injection determined by the triggering software program. The scanning was performed with the following parameters: tube voltage of 120 kV, tube current of 220 mAs, field of view (FOV) of 320 mm×320 mm, slice thickness/interval of 5 mm/5 mm, scanning collimator of 0.625 mm, pitch of 1, and matrix of 512×512. The original images were reconstructed with slice thickness of 0.9 mm without interval. Sixty-five sec after the beginning of contrast injection, portal venous phase CT scans were performed to meet the needs of clinical diagnosis. The parameters used for portal venous phase scans were same with those used for arterial phase MDCTA scans.

Image Analysis

Image data were transmitted to the local workstation (Philips Extended Brilliance workspace workstation, Philips Medical Systems, Best, and the Netherlands) and picture archiving and communication system (PACS) (Siemens AG, Erlangen, Germany) for post-processing and analysis. Thin-slice source images were used to reconstruct perihepatic arteries and hepatic artery (HA) with the techniques including multi-planar reconstruction (MPR), curved planar reconstruction (CPR), maximum intensity projection (MIP) and volume rendering (VR). The reconstructed images were assessed by two experienced abdominal radiologists (the first author possessed a 17-year experience in radiology, and the corresponding author with 24 years of experience in abdominal radiology). The perihepatic arteries included IMA, ICA, IPA, GA, SMA, GDA, CA, RA and LA. Diagnostic criteria of ectopic feeding arteries on MDCTA were as follows: (1) perihepatic arterial branch reached the mass, or (2) ectopic HA could be found although the mass was supplied by HA.

The previous history of TACE therapy was also recorded for further analysis. In addition, we also assessed the morphological characteristics of the primary tumors including the size, location and mass with pseudocapsule or not. For the tumor size, the averaged diameter of the maximal and minimal diameter on the maximal axial slice of the mass was measured on the portal venous phase image. According to the grouping criterion on pathology [23], the lesions were divided into four groups with the averaged diameter set at<3 cm, ≥3 cm and <5 cm, ≥5 cm and <10 cm, and ≥10 cm respectively. According to the anatomic distribution of the primary tumor, the lesions were divided into two groups, i.e., groups with and without liver capsule involved. The criterion for determining the tumor involving liver capsule was the lesion extending beyond the hepatic contour [24]. According to the history of therapy, the lesions were divided into two groups: Non-TACE treated group and TACE treated group. Determining criteria of the tumor undergone TACE therapy included clear history of TACE therapy, and high density of iodized oil deposition in lesions. According to the status of pseudocapsule, lesions were divided into two groups: groups with and without intact pseudocapsule. The criterion for determining lesion with intact pseudocapsule was complete fibrous ring around the lesion, which was isodense or slightly lower density in plain scan and was enhanced in portal-phase enhancement imaging [25].

Statistical Analysis

Statistical analysis was performed with commercially available statistical software (SPSS, version 15.0 for Windows; SPSS Inc., Chicago, USA). Quantitative variables were presented as mean ± standard deviations. The differences of ectopic arteries among the four groups with different tumor size were evaluated by using a Mann-Whitney rank sum tests, while the differences of ectopic arteries between the two groups were analyzed using a chi-square test. Statistical significance was set at P<0.05.

The Features of the Hepatic Tumors

In this cohort, 373 lesions were found in 306 patients. All the lesions are grouped according to the tumor size, location, status of pseudocapsule, and the history therapy of the tumor as shown in Table 1.

The General Features of The Ectopic Arteries

The ectopic arteries of hepatocellular carcinoma are shown in Figure 17. In all lesions, 69.2% (258/373) were fed merely by HA, and 30.8% (115/373) were fed by ectopic arteries with or without HA. According to the number of ectopic arteries, 1 ectopic artery was found in 79.1% (91/115) lesions, 2 ectopic arteries were found in 17.4% (20/115) lesions, and 3 ectopic arteries were in 3.5% (4/115). The total number of ectopic arteries feeding the lesions was 143, which are listed in Table 2.

Ectopic Arteries between Groups

The characteristics of ectopic flood supply in groups with different tumor sizes are presented in Table 3. In general, the larger of the tumor, the more lesions fed by ectopic arteries. Especially, the percentage of ectopic arteries was significantly higher in tumor with size ≥5 cm than that of <5 cm (P<0.05). The differences of the number of lesions with ectopic arteries were statistically significant among all the 4 groups with different tumor size (P<0.05), except between groups with tumor size <3 cm and with tumor size ≥3 cm and <5 cm (P>0.05).

The occurrence of ectopic blood supply in group with involved capsule 53.77% (107/199) was significantly higher than that in group without involved capsule 4.60% (8/174) (P<0.05). Furthermore, the presence of ectopic blood supply occurred more frequently in group with non-intact pseudocapsule than with intact pseudocapsule (112/309 vs. 3/64, P<0.05).

According to the history of TACE therapy, 38.82% (66/170) lesions with history of TACE therapy were found with ectopic arteries, while 24.14% (49/203) lesions without previous TACE therapy were found with ectopic arteries. And the difference was also significant (P<0.05).


In the current study, we confirmed that perihepatic arteries participating in HCC blood supply included two parts, i.e., from lower thorax and from upper abdomen. Arteries from lower thorax include IMA and ICA. IMA derives from subclavian artery, and goes down along bilateral-posterior sternum. It gives off anterior intercostal branches; pericardiacophrenic artery, anterior mediastinal artery, pericardial branches, sternal branches and diaphragmatic artery, and ends with epigastria artery. Branches of pericardiacophrenic artery and diaphragmatic artery penetrate diaphragm, and anastomose with branches of IPA and HA which come from upper abdomen [4], [7], [8]. Additionally, lower posterior intercostal artery also anastomoses with IPA. ICA derives from posterior intercostal artery given off by thoracic aorta, and anastomoses with anterior intercostal branches given off by IMA. It has been proved that liver has other blood supply such as IMA and IPA besides HA [26]. Using CT angiography, we found that there were anastomosis between branches of HA and perihepatic arteries.

Arteries from upper abdomen include IPA, left GA (LGA), right GA (RGA), CA, and epiploic branches of GDA, SMA, right RA, right AA, right LA and abdominal wall artery. IPA composed of right and left branches supplies most part of diaphragm within bare area of liver [4], [9]. IPA varies largely, and derives from aortic artery, celiac trunk artery, SMA or RA. Right and left IPA derives from the same or separate trunk [27], [28]. LGA derives from celiac trunk, travels towards the upper left, and runs down along lesser curvature when reaching cardia and anastomoses with RGA which derives from common HA or proper HA. Because the great omentum moves to a large extent, omental branches of GDA given off by common HA may become the ectopic arteries of HCC. SMA, which is relatively far away from the liver, derives from celiac trunk and extends towards lower abdomen. Because of exogenous growth of some HCC, branches close to the liver such as colonic branch may become supplying artery of HCC [12]. Right RA, AA and LA which derive from abdominal aorta locate in retroperitoneal space along with bare area of liver. If HCC invades retroperitoneal space through the bare area of the liver, these three arteries may participate in blood supply of lesion [11].

Furthermore, the anatomic variance of HA is common among people, especially the separate origination of the right and the left HA and the presence of accessory HA [29], [30]. Thus the TACE therapy might be incomplete, unsuccessful and/or even cause complications, if the variant HA wasn’t acknowledged before the therapy. So, it is necessary to evaluate the origination, running and distribution of HA before the therapy. In the past, DSA was the main imaging method for detecting feeding arteries of HCC including HA and ectopic blood supply. However, previous studies reported that MDCT could be used to detect feeding arteries of HCC from IMA and right IPA [8], [10], [31].

In this study, we found that the incidence of HCC supplied by ectopic arteries increased gradually with the increased size of hepatic mass. Wang et al have found that, after repeated chemoembolization, most of the ectopic blood supply in HCC formed among the tumors with the sizes ranging from 5 to 10 cm in diameter [32]. Our findings were consistent with this published report. With the increased size of HCC, HA would be insufficient to supply nutrition for the tumor especially when HA was blocked by intervention radiology. Because of anatomical basis of ectopic blood supply, perihepatic artery would participate in blood supply for HCC.

We also found that the probability of the occurrence of ectopic blood supply for HCC apparently increased when the tumor involved the liver capsule. Liver capsule can prevent the spread of HCC. However, with the growth of the tumor, it would break through the capsule directly or go through the ligament to invade the adjacent organ. HCC is prone to invade retroperitoneal space via bare area of the liver. Once HCC invades adjacent organ, the supplying blood of the involved organ may also supply the HCC lesions by giving off branches or anastomose with the feeding arteries of the lesion. Because peripheral lesions was inclined to involve the liver capsule and grow outward, the probability of ectopic blood supply for peripheral lesions was higher than that of lesion locating in central area of the liver. Nakai et al noted that, regardless of tumor size, when HCCs were located in the ventral hepatic area directly beneath the diaphragm, IMA can serve as a feeding artery in patients with HA occlusion caused by repeated TACE as shown on DSA [7]. If a tumor in central area grew too fast and large, it would also spread toward capsule or even break through the capsule, and invade the adjacent organ, consequently resulting in the occurrence of ectopic blood supply.

To our knowledge, there were no reports about the effect of tumor growth pattern on the occurrence of ectopic blood supply. In this study, we found that the incidence of the ectopic blood supply without intact pseudocapsule was higher than those with pseudocapsule. Pseudocapsule which is the fibrous tissue membrane enveloping the tumor has some blocking effects on the spread of tumor and ectopic blood supply entering into the mass. If pseudocapsule is not intact, or the mass has no pseudocapsule, it is easy for the tumor to invade adjacent structure or the ectopic blood supply to enter the tumor [33]. It should be noted that we also found no ectopic blood supply in lesions with intact pseudocapsule even when its size was more than 10-cm diameter and located at the edge area of the liver.

TACE has been widely used in the management of hepatocellular carcinoma because of its reliable effectiveness on this tumor since 1983 [34]. TACE played its role by blocking blood supply and injecting drugs into feeding artery of the tumor or into the lesion. After HA was blocked, extra hepatic arteries may have opportunities to participate in blood supply of the tumor [35]. Because HCC is characterized by synchronous and asynchronous multicenter originations, which might cause the tumor to relapse after TACE therapy, the blood supply from the artery was replaced by that from perihepatic arteries due to the asynchronous origination and recurrent lesions when HA were blocked.

Our study has some limitations. First, the DSA, the golden standard for vessels, were not available for the patients due to practical reason. However, MDCT had been proved to be accurate in detecting feeding arteries of HCC [31]. Second, the number of patients who received TACE was small, though we showed the potential impact of this therapy on ectopic blood supply of HCC. Further studies should be conducted in supporting this finding. Third, although the diagnosis of some HCC lesions did not depend on pathology, they could be confirmed by typical medical history, AFP indicator and imaging feature. All patients recruited in this study had increased AFP, and typical CT feature, so the chances of misdiagnose were very little.

In conclusion, MDCTA is able to provide comprehensive characteristics of the ectopic blood supply of HCC and its related risk factors. The formation and patterns of the ectopic blood supply for HCC are closely related to tumor size, superficially anatomic location of tumors, status of pseudocapsule and multiple chemoenbolization. These findings would be helpful for the pre-TACE preparation for patients with HCC.

1. Sung WS, (Year: 2009) The current practice of transarterial chemoembolization for the treatment of hepatocellular carcinoma. Korean J Radiol10: 425–43419721826
2. Sacco R,, Bertini M,, Petruzzi P,, Bertoni M,, Bargellini I,, et al. (Year: 2009) Clinical impact of selective transarterial chemoembolization on hepatocellular carcinoma: a cohort study. World J Gastroenterol15: 1843–184819370781
3. Ko HK,, Ko GY,, Yoon HK,, Sung KB, (Year: 2007) Tumor response to transcatheter arterial chemoembolization in recurrent hepatocellular carcinoma after living donor Liver transplantation. Korean J Radiol8: 320–32717673843
4. Kim HC,, Chung JW,, Lee W,, Jae HJ,, Park JH, (Year: 2005) Recognizing extrahepatic collateral vessels that supply hepatocellular carcinoma to avoid complications of transcatheter arterial chemoembolization. RadioGraphics25: 25–39
5. Lee KH,, Sung KB,, Lee DY,, Park SJ,, Kim KW,, et al. (Year: 2002) Chemoembolization for hepatocellular carcinoma: anatomic and hemodynamic considerations in the HA and portal vein. RadioGraphics22: 1077–109112235337
6. Cheng LF,, Ma KF,, Fan WC,, Yung AW,, Li TM,, et al. (Year: 2010) Hepatocellular carcinoma with extrahepatic collateral arterial supply. J Med Imaging Radiat Oncol54: 26–3420377712
7. Nakai M,, Sato M,, Kawai N,, Minamiguchi H,, Masuda M,, et al. (Year: 2001) Hepatocellular carcinoma: involvement of the internal mammary artery. Radiology219: 147–15211274549
8. Kim HC,, Chung JW,, Jae HJ,, Jeon UB,, Son KR,, et al. (Year: 2008) Hepatocellular carcinoma: prediction of blood supply from an internal mammary artery with multi-detector row CT. J Vasc Interv Radiol19: 1419–144418693042
9. Park SI,, Lee DY,, Won JY,, Lee JT, (Year: 2003) Extrahepatic collateral supply of hepatocellular carcinoma by the intercostal arteries. J Vasc Interv Radiol14: 461–46812682202
10. Kim HC,, Chung JW,, An S,, Son KR,, Jae HJ,, et al. (Year: 2008) Hepatocellular carcinoma: detection of blood supply from the right inferior phrenic artery by the use of multi-detector row CT. J Vasc Interv Radiol19: 1551–155818818094
11. Miyayama S,, Yamashiro M,, Okuda M,, Yoshie Y,, Sugimori N,, et al. (Year: 2010) Hepatocellular carcinoma supplied by the right lumbar artery. Cardiovasc Intervent Radiol33: 53–6019484293
12. Rajan DK,, Ginzburg VE, (Year: 2005) Hepatocellular carcinoma supplied by the ileocolic branch of the superior mesenteric artery. Clin Radiol60: 723–72616038701
13. Mizouni H,, Arous Y,, Hedhli M,, Mahmoud M,, Menif E, (Year: 2012) Multi slice computerized tomography of the heart and coronary arteries. Tunis Med90: 201–20422481186
14. Sosnowski M,, Pysz P,, Gola A,, Szymański L,, Tendera M, (Year: 2009) Coronary artery visualization using a 64-row multi-slice computed tomography in unselected patients with definite or suspected coronary artery disease: a comparison with invasive coronary angiography. Cardiol J16: 413–41719753519
15. Klok FA,, Mos IC,, Kroft LJ,, de Roos A,, Huisman MV, (Year: 2011) Computed tomography pulmonary angiography as a single imaging test to rule out pulmonary embolism. Curr Opin Pulm Med17: 380–38621681098
16. Frauenfelder T,, Wildermuth S,, Marincek B,, Boehm T, (Year: 2004) Nontraumatic emergent abdominal vascular conditions: advantages of multi–detector row CT and three-dimensional imaging. RadioGraphics24: 481–49615026595
17. Kim MU,, Kim HC,, Chung JW,, An S,, et al. (Year: 2011) Hepatocellular carcinoma: prediction of blood supply from an intercostal artery with multidetector row computed tomography. J Vasc Interv Radiol. 22: 1403–1408
18. Kim HC,, Chung JW,, Lee IJ,, An S,, Seong NJ,, et al. (Year: 2011) Intercostal artery supplying hepatocellular carcinoma: demonstration of a tumor feeder by C-arm CT and multidetector row CT. Cardiovasc Intervent Radiol. 34: 87–91
19. Duran C,, Uraz S,, Kantarci M,, Ozturk E,, Doganay S,, et al. (Year: 2009) Hepatic arterial mapping by multidetector computed tomographic angiography in living donor liver transplantation. J Comput Assist Tomogr33: 618–62519638861
20. Okumura Y,, Suzuki M,, Takemura A,, Takada T,, Kawahara K,, et al. (Year: 2007) Basic and clinical studies of visualizing right inferior phrenic artery by multi detector row-CT. Nippon Hoshasen Gijutsu Gakkai Zasshi63: 1152–1161
21. Cademartiri F,, Palumbo A,, Maffei E,, Martini C,, Malagò R,, et al. (Year: 2008) Noninvasive evaluation of the celiac trunk and superior mesenteric artery with multislice CT in patients with chronic mesenteric ischaemia. Radiol Med113: 1135–114218972066
22. Bruix J,, Sherman M, (Year: 2011) American Association for the Study of liver Diseases (Year: 2011) Management of hepatocellular carcinoma: an update. Hepatology53: 1020–102221374666
23. Lu W,, Dong J,, Huang Z,, Guo D,, Liu Y,, et al. (Year: 2008) Comparison of four current staging systems for Chinese patients with hepatocellular carcinoma undergoing curative resection: Okuda, CLIP, TNM and CUPI. Journal of Gastroenterology and Hepatology. 23: 1874–1878
24. Sneag DB,, Krajewski K,, Giardino A,, O’Regan KN,, Shinagare AB,, et al. (Year: 2011) Extrahepatic spread of hepatocellular carcinoma: spectrum of imaging findings. AJR Am J Roentgenol197: 658–66421862808
25. Ishigami K,, Yoshimitsu K,, Nishihara Y,, Irie H,, Asayama Y,, et al. (Year: 2009) Hepatocellular carcinoma with a pseudocapsule on gadolinium enhanced MR images: Correlation with Histopathologic Findings. Radiology250: 435–44319095782
26. Michels NA, (Year: 1953) Collateral arterial pathways to the liver after ligation of the HA and removal of the celiac axis. Cancer6: 708–72413059765
27. Gwon D,, Ko JY,, Yoon HK,, Sung KB,, Lee JM,, et al. (Year: 2007) Inferior phrenic artery: anatomy, variations, pathologic conditions, and interventional management. RadioGraphics27: 687–70517495287
28. Loukas M,, Hullett J,, Wagner T, (Year: 2005) Clinical anatomy of the inferior phrenic artery. Clin Anat18: 357–36515971218
29. Ishigami K,, Zhang Y,, Rayhill S,, Katz D,, Stolpen A, (Year: 2004) Does variant HA anatomy in a liver transplant recipient increase the risk of HA complications after transplantation?AJR Am J Roentgenol183: 1577–158415547194
30. Coşkun M,, Kayahan EM,, Ozbek O,, Cakir B,, Dalgiç A,, et al. (Year: 2005) Imaging of hepatic arterial anatomy for depicting vascular variations in living related liver transplant donor candidates with multidetector computed tomography: comparison with conventional angiography. Transplant Proc37: 1070–107315848625
31. Kim HC,, Chung JW,, Park JH,, An S,, Son KR,, et al. (Year: 2009) Transcatheter arterial chemoembolization for hepatocellular carcinoma: prospective assessment of the right inferior phrenic artery with C-arm CT. J Vasc Interv Radiol20: 888–89519481471
32. Wang YL,, Li MH,, Cheng YS,, Shi HB,, Fan HL, (Year: 2005) influential factors and formation of extrahepatic collateral artery in unresectable hepatocellular carcinoma. World J Gastroenterol11: 2637–264215849825
33. Grazioli L,, Olivetti L,, Fugazzola C,, Benetti A,, Stanga C,, et al. (Year: 1999) The pseudocapsule in hepatocellular carcinoma: correlation between dynamic MR imaging and pathology. Eur Radiol9: 62–679933382
34. Yamada R,, Sato M,, Kawabata M,, Nakatsuka H,, Nakamura K,, et al. (Year: 1983) HA embolization in 120 patients with unresectable hepatoma. Radiology148: 397–4016306721
35. Shibata T,, Kojima N,, Tabuchi T,, Itoh K,, Konishi J, (Year: 1998) Transcatheter arterial chemoembolization through collateral arteries for hepatocellular carcinoma after arterial occlusion. Radiat Med16: 251–2569814419


[Figure ID: pone-0071942-g001]
doi: 10.1371/journal.pone.0071942.g001.
Figure 1  In a 45-year-old man with hepatocellular carcinoma in S8, left internal mammary artery participates in blood supply for the tumour.

Axial (a) and coronal (b) maximum intensity projection display that left mammary artery gives off branches into the lesion, and the branches are twist and enlarged (white arrow).

[Figure ID: pone-0071942-g002]
doi: 10.1371/journal.pone.0071942.g002.
Figure 2  In a 52-year-old man with hepatocellular carcinoma in S7, right inferior phrenic artery participates in HCC blood supply for the tumour.

Axial (a) and maximum intensity projection (b) images display the enlarged right inferior phrenic artery (black arrow) and its branches into the lesion (white arrow), respectively.

[Figure ID: pone-0071942-g003]
doi: 10.1371/journal.pone.0071942.g003.
Figure 3  In a 31-year-old man with hepatocellular carcinoma in S2 and S3, left inferior phrenic artery participates in blood supply for the tumour.

Axial (a) and coronal (b) maximum intensity projection display that left inferior phrenic artery is enlarged apparently (white arrow) and its branches into the tumor (white arrow).

[Figure ID: pone-0071942-g004]
doi: 10.1371/journal.pone.0071942.g004.
Figure 4  In a 44-year-old man with hepatocellular carcinoma in S2 and S3, left gastric artery participates in blood supply for the carcinoma.

Maximum intensity projection (a) and volume rendering technique (b) display that left gastric artery gives off a branch into the lesion and the branch is enlarged apparently (white arrow).

[Figure ID: pone-0071942-g005]
doi: 10.1371/journal.pone.0071942.g005.
Figure 5  In a 37-year-old woman with hepatocellular carcinoma in right lobe of liver, the variable HA participates in blood supply for the carcinoma.

Maximum intensity projection (a) and volume rendering technique (b) display that right HA arise from superior mesenteric artery (long arrow) and left HA arise from left gastric artery (short arrow), which give off branches into the lesion.

[Figure ID: pone-0071942-g006]
doi: 10.1371/journal.pone.0071942.g006.
Figure 6  In a 35-year-old man with hepatocellular carcinoma in S6 and S7, right renal artery and adrenal artery participate in blood supply for the carcinoma.

Maximum intensity projection (a) and volume rendering technique (b) display that right adrenal artery (short arrow) and the initial segment of right renal artery (long arrow) gives off branches into the tumor.

[Figure ID: pone-0071942-g007]
doi: 10.1371/journal.pone.0071942.g007.
Figure 7  In a 59-year-old man with hepatocellular carcinoma with S5 and S8, abdominal wall artery participates in blood supply for the carcinoma.

Maximum intensity projection displays that a large, twist branch of abdominal wall artery enter the tumor (white arrow).

[TableWrap ID: pone-0071942-t001] doi: 10.1371/journal.pone.0071942.t001.
Table 1  Number of tumors in groups.
Groups Number of lesions (n = 373)
Tumor size (cm)
<3 34 (9.11)
≥3 and <5 86 (23.06)
≥5 and <10 144 (38.61)
≥10 109 (29.22)
Tumor location
With liver capsule involved. 199 (53.35)
Without liver capsule involved 174 (46.65)
The status of pseudocapsule
With intact pseudocapsule 64 (17.16)
Without intact pseudocapsule 309 (82.84)
History of therapy
With TACE treatment 170 (45.58)
Without TACE treatment 203 (54.42)

Note: Numbers in the bracket are percentages; and TACE = Transcatheter arterial chemoembolization.

[TableWrap ID: pone-0071942-t002] doi: 10.1371/journal.pone.0071942.t002.
Table 2  Number of ectopic blood supply arteries according to their anatomy.
Ectopic blood supply arteries Number (n = 143)
From lower thorax
Internal mammary artery 8 (5.59)
Intercostals artery 4 (2.80)
From upper abdomen
Right inferior phrenic artery 74 (51.75)
Left inferior phrenic artery 12 (8.39)
Left gastric artery 24 (16.78)
Right gastric artery 1 (0.70)
Superior mesenteric artery 1 (0.70)
Gastroduodenal artery 5 (3.50)
Cystic artery 9 (6.29)
Right renal artery 2 (1.40)
Right adrenal artery 1 (0.70)
Right lumbar artery 1 (0.70)
Abdominal wall artery 1 (0.70)

Note: Numbers in the bracket are percentages.

[TableWrap ID: pone-0071942-t003] doi: 10.1371/journal.pone.0071942.t003.
Table 3  Ectopic blood supply in tumors according to the tumor sizes.
Tumor sizes No. of Hepatic tumor (n = 373) Tumors with ectopic arteries (n = 115)
<3 cm 34 (9.11) 1 (2.94)
≥3 cm and <5 cm 86 (23.06) 5 (5.81)
≥5 cm and <10 cm 144 (38.61) 45 (31.25)
≥10 cm 109 (29.22) 64 (58.72)

Note: Numbers in the bracket are percentages.

Article Categories:
  • Research Article
Article Categories:
  • Biology
    • Population Biology
      • Epidemiology
Article Categories:
  • Medicine
    • Clinical Research Design
      • Epidemiology
    • Epidemiology
      • Cancer Epidemiology
    • Gastroenterology and Hepatology
      • Gastrointestinal Cancers
    • Oncology
      • Cancers and Neoplasms
        • Gastrointestinal Tumors
          • Hepatocellular Carcinoma
    • Radiology
      • Diagnostic Radiology
        • Computed Tomography

Previous Document:  Influence of contrast and coherence on the temporal dynamics of binocular motion rivalry.
Next Document:  Loss of the Anorexic Response to Systemic 5-Aminoimidazole-4-Carboxamide-1-?-D-Ribofuranoside Admini...