Document Detail


Echolocation behavior of the Japanese horseshoe bat in pursuit of fluttering prey.
MedLine Citation:
PMID:  22777677     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Echolocation sounds of Rhinolophus ferrumequinum nippon as they approached a fluttering moth (Goniocraspidum pryeri) were investigated using an on-board telemetry microphone (Telemike). In 40 % of the successful moth-capture flights, the moth exhibited distinctive evasive flight behavior, but the bat pursued the moth by following its flight path. When the distance to the moth was approximately 3-4 m, the bats increased the duration of the pulses to 65-95 ms, which is 2-3 times longer than those during landing flight (30-40 ms). The mean of 5.8 long pulses were emitted before the final buzz phase of moth capture, without strengthening the sound pressure level. The mean duration of long pulses (79.9 ± 7.9 ms) corresponded to three times the fluttering period of G. pryeri (26.5 × 3 = 79.5 ms). These findings indicate that the bats adjust the pulse duration to increase the number of temporal repetitions of fluttering information rather than to produce more intense sonar sounds to receive fine insect echoes. The bats exhibited Doppler-shift compensation for echoes returning from large static objects ahead, but not for echoes from target moths, even though the bats were focused on capturing the moths. Furthermore, the echoes of the Telemike recordings from target moths showed spectral glints of approximately 1-1.5 kHz caused by the fluttering of the moths but not amplitude glints because of the highly acoustical attenuation of ultrasound in the air, suggesting that spectral information may be more robust than amplitude information in echoes during moth capturing flight.
Authors:
Shigeki Mantani; Shizuko Hiryu; Emyo Fujioka; Naohiro Matsuta; Hiroshi Riquimaroux; Yoshiaki Watanabe
Related Documents :
8724927 - An initial evaluation of work fatigue and circadian changes as assessed by multiplate p...
1426117 - Developmental aspects of stance regulation, compensation and adaptation.
17039357 - Adaptation of postural orientation to changes in surface inclination.
22511997 - Indiscriminable sounds determine the direction of visual motion.
10664797 - Electrophysiological evidence for an early attentional mechanism in visual processing i...
25193487 - Volumetric definition of shoulder range of motion and its correlation with clinical sig...
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-7-10
Journal Detail:
Title:  Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology     Volume:  -     ISSN:  1432-1351     ISO Abbreviation:  -     Publication Date:  2012 Jul 
Date Detail:
Created Date:  2012-7-10     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101141792     Medline TA:  J Comp Physiol A Neuroethol Sens Neural Behav Physiol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
Faculty of Engineering, Doshisha University, Kyotanabe, 610-0321, Japan.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Correlation of Hair Mineral Concentrations with Insulin Resistance in Korean Males.
Next Document:  Aspirin, nonsteroidal anti-inflammatory drugs, paracetamol, and risk of endometrial cancer: A case c...