Document Detail

Early and intermediate survival after transcatheter aortic valve implantation: systematic review and meta-analysis of 14 studies.
Jump to Full Text
MedLine Citation:
PMID:  23315515     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
BACKGROUND: Transcatheter aortic valve implants (TAVIs) is indicated as an alternative to surgical valve replacement for patients unfit for surgery. No systematic review has studied survival after 2 years and limited information is available on between-study heterogeneity.
OBJECTIVES: A systematic review and meta-analysis on intermediate survival after TAVI.
DATA SOURCES: PubMed, EMBASE, Scopus and references of selected articles.
STUDY ELIGIBILITY CRITERIA: Clinical studies evaluating TAVI, published between 2010 and 2012, reporting survival at 2 or more years.
PARTICIPANTS: About 3500 patients from 14 studies.
STUDY APPRAISAL AND SYNTHESIS METHODS: Proportion meta-analysis with 95% CI and heterogeneity assessment (I(2) and Cochran's Q). Meta-regression analysis was performed as well.
RESULTS: Pooled immediate postoperative death rate was 7.8% (95% CI 6.2% to 9.8%, I(2)=40.8%; Cochran's Q=97.7 with 92.9 df, p<0.0001) and stroke rate was 3.8% (95% CI 2.8% to 5.0%, I(2)=34.3%; Cochran's Q=96.5 with 92.9 df, p<0.0001). Pooled death rates at 1, 2 and 3 years were 23.2%, 31.0% and 38.6%, respectively. Among studies reporting on concomitant percutaneous coronary intervention, pooled death rates at 30 days, 1 year and 2 years were 6.3%, 17.8% and 25.8%, respectively.
LIMITATIONS: Although our analysis examined a total of about 3500 patients, only a minority of these were actually followed up after 2 years.
CONCLUSIONS: Pooled survival rates after TAVI (at 2 years: 69.0%; at 3 years: 61.4%) can be considered excellent, particularly in the light of the high-risk profile of this patient population. IMPLICATIONS OF KEY FINDINGS: The favourable intermediate outcome in patients subjected to TAVI seems to justify its use in patients unfit for surgery. Such pooled results indicate that TAVI is a valid alternative to surgical valve replacement, but lack of data on late durability after TAVI prevents its use in low-risk patients with long expectancy of life.
Authors:
Andrea Messori; Sabrina Trippoli; Fausto Biancari
Related Documents :
23062535 - Long-term outcomes after transcatheter aortic valve implantation: insights on prognosti...
11039415 - Results of macular hole surgery in patients over 80 years of age.
19376495 - A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related mac...
24227365 - Postoperative adverse outcomes after non-hepatic surgery in patients with liver cirrhosis.
23917675 - Goal-directed fluid optimization based on stroke volume variation and cardiac index dur...
9600275 - Outcomes analysis in 100 liver transplantation patients.
Publication Detail:
Type:  Journal Article     Date:  2013-01-11
Journal Detail:
Title:  BMJ open     Volume:  3     ISSN:  2044-6055     ISO Abbreviation:  BMJ Open     Publication Date:  2013  
Date Detail:
Created Date:  2013-01-14     Completed Date:  2013-01-15     Revised Date:  2013-11-25    
Medline Journal Info:
Nlm Unique ID:  101552874     Medline TA:  BMJ Open     Country:  England    
Other Details:
Languages:  eng     Pagination:  -     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): BMJ Open
Journal ID (iso-abbrev): BMJ Open
Journal ID (hwp): bmjopen
Journal ID (publisher-id): bmjopen
ISSN: 2044-6055
Publisher: BMJ Publishing Group, BMA House, Tavistock Square, London, WC1H 9JR
Article Information
Download PDF
Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions
open-access:
Received Day: 4 Month: 7 Year: 2012
Revision Received Day: 4 Month: 11 Year: 2012
Accepted Day: 12 Month: 11 Year: 2012
collection publication date: Year: 2013
Electronic publication date: Day: 11 Month: 1 Year: 2013
Volume: 3 Issue: 1
E-location ID: e001770
PubMed Id: 23315515
ID: 3549234
Publisher Id: bmjopen-2012-001770
DOI: 10.1136/bmjopen-2012-001770

Early and intermediate survival after transcatheter aortic valve implantation: systematic review and meta-analysis of 14 studies Alternate Title:Survival after transcatheter aortic valve implantation
Andrea Messori1
Sabrina Trippoli1
Fausto Biancari2
1HTA Unit, Estav Centro Toscana, Regional Health Service, Firenze and Prato, Italy
2Department of Surgery, Oulu University Hospital, Oulu, Finland
Correspondence to Dr Andrea Messori; andrea.messori.it@gmail.com, andrea.messori@estav-centro.toscana.it

Article summary
Article focus
  • Transcatheter aortic valves can be indicated for patients unfit for surgery or as an alternative to surgical valve replacement.
  • No difference in mortality at 2 years was found in one randomised trial comparing transcatheter valve versus surgical replacement.
  • No systematic review has studied survival after 2 years and limited information is available on between-study heterogeneity.
Key messages
  • In our meta-analysis of 14 studies, pooled survival rates at 2 and 3 years were 69.0% and 61.4%, respectively.
  • Survival rates up to 2 years were similar to those reported in the randomised trial.
  • Immediate and intermediate death rates were worse than those reported in a recent meta-analysis of 48 studies examining patients aged >80 years who underwent conventional isolated aortic valve replacement.
Strengths and limitations of this study
  • Our study conveys original information beyond 2 years in a quite large series of studies.
  • Although our analysis examined a total of about 3500 patients, only a minority of these were actually followed up after 2 years.

Introduction

Although the results at 2 years of the randomised PARTNER trial have shown similar death rates between transcatheter aortic valve implant (TAVI) and conventional aortic valve replacement (AVR),1 extending this comparison on the basis of other studies can be worthwhile.

With regard to surgery, a recent meta-analysis has examined survival in patients aged ≥80 years undergoing conventional isolated AVR.2 From the analysis of 48 studies summarising the experience of three decades, Vasques et al2 reported a pooled death rate at 2 years of 16.4% (95% CI 14.4% to 18.4%), which is clearly a more favourable outcome than has commonly been thought so far.

The experience with TAVI is much more recent. One meta-analysis of 16 studies has systematically determined the rates of major outcomes up to 1 year,3 but limited information is available on late results.3, 4 The presence of a learning curve has consistently affected the results produced by this device,5 therefore, only the most recent studies are likely to reflect the outcomes expected with this technique.

For these reasons, we undertook the present meta-analysis of available studies to summarise the current data on the intermediate outcome after TAVI.


Methods
Study design

Our study was designed to examine mortality at 2 years or more after TAVI, and so we excluded those studies based on follow-up less than 2 years. Furthermore, we limited our literature search to the period from January 2010 to June 2012 in order to restrict the analysis to the most recent studies, which are likely not affected by a learning curve. We retrieved many types of clinical studies (randomised trials, observational studies, single-centre study). All kind of prostheses so far implanted in humans were included in the present analysis. The keywords used for our search were: ‘aortic valve’ AND (percutaneous OR transcatheter), combined with the limitations ‘only item with abstract’ and ‘publication date from 2010 to 2012’. Statistical analysis was carried out in the form of a proportion meta-analysis that generated study-specific rates of 1-year to 3-year mortality with their respective 95% CIs. Besides the data on survival at 2 years or more, additional information on baseline patient's and operative characteristics was extracted.

Management of survival information from Kaplan-Meier curves

Our study included a simplified analysis (in which the absolute event rates from the studies were determined on the basis of an approximate method6) and a more complex analysis (in which each Kaplan-Meier curve of the various studies was subjected to a complete reconstruction of the number of events along with their respective timings according to the recommendations of Tierney et al7). Since the simplified analysis gave the same results as those obtained from the more complex one, only the former is presented herein.

In the simplified analysis, the death rates at 2 years (death rates from any cause) were handled as follows. In those studies where all patients had been followed up until at least 2 years (with the obvious exception of deaths before 2 years), the percent death rate at 2 years was simply the ratio between the number of deaths observed within this time interval and the total number of enrolled patients multiplied by 100. In the remaining cases (ie, in studies with censored patients), the death rate at 2 years was directly obtained from the Kaplan-Meier curve presented in the original study.

The study-specific input information for a proportion meta-analysis is represented by the ratio of number of deaths and number of patients entering the interval, and moreover, the denominator of this ratio acts as a study-specific statistical weight for the meta-analysis. In studies including censoring, to estimate numerators and denominators at specific time-points consistently with the purposes of our meta-analysis, we used the method of Stewart and Parmar.6 Accordingly, assuming that the number of patients still at risk at the time-point concerned (eg, at 2 years) is known (eg, NAR2 years), this denominator (adjusted for the number of patient-years accumulated) is calculated from the following equation:


where RATEKM−2 years is the mortality Kaplan-Meier rate (expressed from 0 to 1).

Likewise, adjusted numerators at the time-point concerned were calculated as:


Finally, the adjusted study-specific crude event rate was determined as: (adjusted numerator)/(adjusted denominator).

According to these equations, if the number of enrolled patients at time zero is NAR-time 0 and mortality at the time point concerned differs from 0, the ‘adjusted denominator’ is by definition less than NAR-time 0. For obvious mathematical reasons, one exception takes place when no patients have been lost to follow-up over the initial 2 years (or, in other words, when all living patients have been followed up until at least 2 years) because in these cases the ‘adjusted denominator’ is equal to NAR-time 0.

This method of downward readjustment of the denominator has the purpose to reduce (from the number of enrolled patients at time zero, or NAR-time 0, to ‘adjusted denominator’) the statistical weight of the studies in which some of the patients initially at risk have not been followed up until the time-point concerned.

In our analyses at 1 and 3 years, similar equations were employed. In all of these three analyses, we planned to contact the investigators for cases where the raw data needed for our survival analysis could not be extracted as indicated above.

In the more complex analysis not presented in this paper, the same readjustment of the study-specific statistical weights was performed using the method described by Tierney et al.7

Meta-analysis

The death rates at 2 years for individual studies were then analysed according to a proportion meta-analysis using the random effect model. The pooling methods were the same as those reported in a previous study2 and in numerous other studies8 as well. Our meta-analytic results included: (1) the 95% CI for individual study-specific rates; (2) the meta-analytical pooled rate at 1, 2 and 3 years with 95% CI; (3) standard indexes assessing between-study heterogeneity including I2 and Cochran's Q. Our meta-analysis was rerun under different conditions and particularly after excluding specific studies that were thought to be responsible for the large heterogeneity found in our primary analysis.

Meta-regression, in which we tested whether death rates were affected by specific covariates, was carried out as previously described.2 Finally, because of the one-arm and observational nature of the included studies, our analysis did not include any adjustment aimed at evaluating publication bias.


Results

Our literature search on PubMed yielded 963 eligible articles, which were scrutinised by two co-authors (AM and ST). Figure 1 illustrates the PRISMA diagram of our search. A total of 14 studies1, 9–21 reporting on 3496 patients met our inclusion criteria and were included in our analysis. Tables 1 and 2 summarise the main characteristics of these studies.

The raw data extracted from the trials were adequate for our analysis, and so we did not have to contact any investigators. The pooled immediate postoperative death rate was 7.8% (95% CI 6.2% to 9.8%, I2=40.8%; Cochran's Q=97.7 with 93 df, p<0.0001) and stroke rate was 3.8% (95% CI 2.8% to 5.0%, I2=34.3%; Cochran's Q=96.5 with 93 df, p<0.0001).

Pooled death rates at 1, 2 and 3 years were 23.2%, 31.0% and 38.6%, respectively. Survival data are reported in figures 2 and 3. Only six studies reported data on 3-year mortality, and therefore we restricted further analysis at results at 2 years.

At 2 years, indexes of heterogeneity consistently were at levels of statistical significance (I2=52.1%; Cochran's Q=27.2 with 13 df, p=0.012). Furthermore, 95% CI of the death rate ranged from 25.7% to 36.6% indicating considerable variability in this outcome end-point. Reasons that can explain this heterogeneity likely reside in the criteria for patient selection. Figure 3 clearly shows that patients classified as inoperable in the studies by Makkar et al16 and Kodali et al1 showed an increased mortality at 2 years. However, the between-study heterogeneity remained significant even after exclusion of these two trials (data of this sensitivity analysis not shown).

Sensitivity analysis for logistic European System for Cardiac Operative Risk Evaluation (EuroSCORE) showed that at 2 years, studies reporting on patients with a logistic EuroSCORE <25% had a pooled death rate of 31.4% (95% CI 26.4% to 36.5%), whereas it was 32.5% (95% CI 24.7% to 41.3%) among patients with a logistic EuroSCORE>25%.

Similarly, sensitivity analysis for Society of Thoracic Surgeons (STS) score showed that at 2 years studies reporting on patients with a STS score <10% had a pooled death rate of 33.8% (95% CI 28.6% to 39.4%), whereas it was 32.0% (95% CI 26.1% to 38.6%), among patients with a STS score >10%. These findings were confirmed at meta-regression (p=0.802).

Interestingly, data from four studies9, 14, 17, 20 reporting on concomitant percutaneous coronary intervention (PCI) showed a somewhat lower death rate at 2 years (25.8%, 95% CI 22.0% to 30.1%, I2=0%; Cochran's Q=59.9 with 75 df, p<0.0001). These improved results were consistent with somewhat lower mortality at 30 days (6.3%, 95% CI 5.0% to 8.0%, I2=12.0%; Cochran's Q=77.6 with 75 df, p<0.0001) and 1 year (17.8%, 95% CI 13.5% to 23.0%, I2=39.3%; Cochran's Q=89.5 with 75 df, p<0.0001). Scarce data on the extent of coronary artery disease and revascularisation policy prevented further comparative analysis. However, assuming that no concomitant PCI was performed in the other studies, meta-regression showed that a policy of coronary revascularisation was associated with significantly better 2-year survival (coefficient −0.004, p=0.024).

Finally, transapical approach did not affect 2-year survival according to meta-regression (p=0.736).


Discussion

Our article raises a number of issues particularly if our findings are interpreted in the framework of other recent reports. First, the recent publication of the survival results from the SOURCE registry22 allow us to compare the death rates at 1 year between the population included in our meta-analysis (3496 patients; 1-year mortality=23.2%) and the large patient series included in this registry (3195 patients; 1-year mortality=24.0%). While it should be stressed that the population enrolled in the SOURCE registry could not be included in our analysis due to the lack of survival data after 1 year, these nearly identical results at 1 year suggest a good representativeness of the patients of our meta-analysis.

Since TAVI still is a rather novel procedure, data on the longer term outcome can be important and the 2-year results of the PARTNER trial (33.9% mortality) are particularly relevant from this point of view, also because they agree with those found in our meta-analysis (31.0% mortality at 2 years). The purpose of our analysis to study outcomes from other studies is worthwhile not only because information up to 3 years was estimated but also because information was obtained about the between-study variability of these outcomes.

Although a difference in 2-year mortality favouring AVR over TAVI could be suggested by indirectly comparing the present findings (31.0% with 95% CI of 25.7% to 36.6%) with pooled data of conventional surgery in octogenarians (16.4%, 95% CI 4.4% to 18.4%),2 the PARTNER trial showed no such a difference. While the reasons underlying this discrepancy cannot be easily identified, one explanation can be that a variety of known and possibly unknown factors still tend to generate less reliable results with TAVI than those, more reproducible, reported with conventional surgery. This hypothesis is in keeping with the significant heterogeneity found across the TAVI studies included in our meta-analysis.

In patients fit for surgery, mortality risk after isolated AVR has significantly decreased during the last decade presumably because of improvements in anaesthesiological and peri-operative care as well as the introduction of mini-sternotomy AVR.23 This may explain why patients aged >80 years undergoing AVR nowadays show unexpectedly good survival rates.2 In light of this evidence, TAVI can be seen as a valid alternative in the very elderly only if the operative risk is prohibitive. Indeed, when operative risk of very elderly patients is not prohibitive their immediate and late survival after AVR are excellent.2

The impact of coronary artery disease and the benefits and risks associated with its concomitant treatment cannot be addressed in this meta-analysis. Even if coronary artery disease requiring revascularisation was an exclusion criteria in a few studies, the prevalence of coronary artery disease may have a significant impact on the early and late outcome of these patients18 as suggested by better immediate and intermediate survival rates reported in a few series.9, 14, 17, 20 However, at this stage, scrutiny of the value of hybrid approach is not possible because of lack of specific data on the prevalence of coronary artery disease requiring revascularisation and timing of PCI.

A major limitation of our study is the fact that in studies with a follow-up beyond 2 years, the patients who reached this follow-up length were only 10% of the population initially enrolled. Another weakness of this analysis is the lack of information at individual patient level which prevented us from assessing the prognostic value of important clinical covariates and concomitant PCI.

The debate on the role that TAVI can have in the present therapeutic scenario is very lively, and conflicting opinions have recently been published.24, 25 At the same time, although further studies on outcomes have been made available,3, 26 no additional information on the results beyond 2 years has been published.

In conclusion, despite the high level of heterogeneity, our pooled analysis of available survival data supports the effectiveness of TAVI at 2 or 3 years. TAVI can offer rather durable intermediate results and can therefore be considered a valid treatment in high-risk patients. However, lack of data on structural durability at this stage prevents its use in patients with low operative risk and long expectancy of life.



Notes

Contributors: AM and ST conceived the idea of the study and were responsible for its design. ST and FB were responsible for the literature search and the extraction of the event frequencies from the clinical studies. AM carried out the meta-analysis calculations which were then reviewed by FB. The initial draft of the manuscript was prepared by AM and ST and then circulated repeatedly among the three authors for critical revision. AM and FB contributed to the interpretation of the results.

Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests: These authors state no conflict of interest for the purposes of the present analysis. However, the institution in which AM and ST work is responsible for the purchase of TAVI-prostheses for the area of Florence, Italy.

Provenance and peer review: Not commissioned; externally peer reviewed.

Data sharing statement: There are no additional data available.

References
1. Kodali SK,Williams MR,Smith CR,et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J MedYear: 2012;366:1686–9522443479
2. Vasques F,Messori A,Lucenteforte E,et al. Immediate and late outcome of patients aged 80 years and older undergoing isolated aortic valve replacement: a systematic review and meta-analysis of 48 studies. Am Heart JYear: 2012;163:477–8522424020
3. Généreux P,Head SJ,Van Mieghem NM,et al. Clinical outcomes after transcatheter aortic valve replacement using valve academic research consortium definitions: a weighted meta-analysis of 3519 patients from 16 studies. J Am Coll CardiolYear: 2012:59:2317–2622503058
4. Faxon DP. Transcatheter aortic valve implantation: coming of age. CirculationYear: 2011;124:e439–4022025643
5. Gurvitch R,Tay EL,Wijesinghe N,et al. Transcatheter aortic valve implantation: lessons from the learning curve of the first 270 high-risk patients. Catheter Cardiovasc IntervYear: 2011;78:977–8421656647
6. Stewart LA,Parmar MK. Meta-analysis of the literature or of individual patient data: is there a difference?LancetYear: 1993;341:418–228094183
7. Tierney JF,Stewart LA,Ghersi D,et al. Practical methods for incorporating summary time-to-event data into meta-analysis. TrialsYear: 2007;8:1617555582
8. Biondi-Zoccai GG,Abbate A,Agostoni P,et al. Long-term benefits of an early invasive management in acute coronary syndromes depend on intracoronary stenting and aggressive antiplatelet treatment: a metaregression. Am Heart JYear: 2005;149:504–1115864240
9. Abdel-Wahab M,Mostafa AE,Geist V,et al. Comparison of outcomes in patients having isolated transcatheter aortic valve implantation versus combined with preprocedural percutaneous coronary intervention. Am J CardiolYear: 2012;109:581–622133754
10. Attias D,Himbert D,Ducrocq G,et al. Immediate and mid-term results of transfemoral aortic valve implantation using either the Edwards Sapien transcatheter heart valve or the Medtronic CoreValve System in high-risk patients with aortic stenosis. Arch Cardiovasc DisYear: 2010;103:236–4520656634
11. Bleiziffer S,Mazzitelli D,Opitz A,et al. Beyond the short-term: clinical outcome and valve performance 2 years after transcatheter aortic valve implantation in 227 patients. J Thorac Cardiovasc SurgYear: 2012;143:310–1722137802
12. Buellesfeld L,Gerckens U,Schuler G,et al. 2-year follow-up of patients undergoing transcatheter aortic valve implantation using a self-expanding valve prosthesis. J Am Coll CardiolYear: 2011;57:1650–721492762
13. D'Onofrio A,Rubino P,Fusari M,et al. Clinical and hemodynamic outcomes of ‘all-comers’ undergoing transapical aortic valve implantation: results from the Italian Registry of Trans-Apical Aortic Valve Implantation (I-TA). J Thorac Cardiovasc SurgYear: 2011;142:768–7521840020
14. Gasparetto V,Fraccaro C,Tarantini G,et al. Safety and effectiveness of a selective strategy for coronary artery revascularization before transcatheter aortic valve implantation. Catheter Cardiovasc Interv 28 Mar 2012. doi: 10.1002/ccd.24434 [Epub ahead of print].
15. Kalavrouziotis D,Rodés-Cabau J,Bagur R,et al. Transcatheter aortic valve implantation in patients with severe aortic stenosis and small aortic annulus. J Am Coll CardiolYear: 2011;58:1016–2421867836
16. Makkar RR,Fontana GP,Jilaihawi H,et al. Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. N Engl J MedYear: 2012;366:1696–70422443478
17. Moat NE,Ludman P,de Belder MA,et al. Long-term outcomes after transcatheter aortic valve implantation in high-risk patients with severe aortic stenosis: the U.K. TAVI (United Kingdom Transcatheter Aortic Valve Implantation) Registry. J Am Coll CardiolYear: 2011;58:2130–822019110
18. Ussia GP,Barbanti M,Petronio AS,et al. Transcatheter aortic valve implantation: 3-year outcomes of self-expanding CoreValve prosthesis. Eur Heart JYear: 2012;33:969–7622240494
19. Walther T,Kempfert J,Rastan A,et al. Transapical aortic valve implantation at 3 years. J Thorac Cardiovasc SurgYear: 2012;143:326–3121724204
20. Wenaweser P,Pilgrim T,Kadner A,et al. Clinical outcomes of patients with severe aortic stenosis at increased surgical risk according to treatment modality. J Am Coll CardiolYear: 2011;58:2151–6222078420
21. Ye J,Cheung A,Lichtenstein SV,et al. Transapical transcatheter aortic valve implantation: follow-up to 3 years. J Thorac Cardiovasc SurgYear: 2010;139:1107–1320412948
22. Gilard M,Eltchaninoff H,Iung B,et al. Registry of transcatheter aortic-valve implantation in high-risk patients. N Engl J MedYear: 2012;366:1705–1522551129
23. ElBardissi AW,Shekar P,Couper GS,et al. Minimally invasive aortic valve replacement in octogenarian, high-risk, transcatheter aortic valve implantation candidates. J Thorac Cardiovasc SurgYear: 2011;141:328–3521047646
24. Webb JG,Wood DA. Current status of transcatheter aortic valve replacement. J Am Coll CardiolYear: 2012;60:483–9222749306
25. Van Brabandt H,Neyt M,Hulstaert F. Transcatheter aortic valve implantation (TAVI): risky and costly. BMJYear: 2012;345:e471022849955
26. Gotzmann M,Korten M,Bojara W,et al. Long-term outcome of patients with moderate and severe prosthetic aortic valve regurgitation after transcatheter aortic valve implantation. Am J CardiolYear: 2012;110:1500–622863177

Figures

[Figure ID: BMJOPEN2012001770F1]
Figure 1 

PRISMA diagram of our literature search. Other sources for identification of further articles included EMBASE and Scopus. The lack of survival information at 2 years was the only reason for the final exclusion of 12 studies. Last search was run on 1 July 2012.



[Figure ID: BMJOPEN2012001770F2]
Figure 2 

Survival after transcatheter aortic valve implant: the solid line (with circles) indicates the pooled results of our analysis while the dashed lines represent 95% CIs.



[Figure ID: BMJOPEN2012001770F3]
Figure 3 

Study-specific death rates and pooled meta-analytic rates at 1 (upper panel), 2 (intermediate panel) and 3 years (lower panel) after transcatheter aortic valve implant; for each study, N indicates the adjusted denominator at the time-point concerned; CIs are at 95%.



Tables
[TableWrap ID: BMJOPEN2012001770TB1] Table 1 

Characteristics of studies and baseline variables of patients who underwent transcatheter aortic valve implantation included in this analysis


First author Year Type of study Type of prosthesis Study period Number of patients Age Mean STS score Mean Logistic EuroSCORE Coronary artery disease (%) Prior CABG/cardiac surgery (%) Prior PCI (%) Peripheral vascular disease (%) Cerebro- vascular disease (%) Pulmonary disease (%) LVEF (%)
Abdel-Wahab9 2012 R, SC CoreValve 09.2007–03.2011 125 81.0±6.4 24.3±13.8 72.8 19.2 30.4 16.8 10.4 47.7±14.5
Attias10 2010 P, SC SAPIEN /CoreValve 10.2006–06.2009 83 81±9 15±8 26±14 50.6 21.7 19.3 27.7 32.5 52±15
Bleiziffer11 2012 P, SC SAPIEN /CoreValve 06.2007–03.2009 227 81±7 7±5 21±14 52.0 18.5 26.9 18.1 22.9
Buellesfeld12 2011 P, MC CoreValve 2006–2009 126 81.9±6.4 23.4±13.8 65.9 26.2 23.8 19.1 22.2 23.0
D'Onofrio13 2011 P, MC SAPIEN 04.2008–09.2010 504 81.2±6.5 11.0±4.0 26.3±13.8 50.4 16.5 22.0 45.4 34.3 52.4±13.6
Gasparetto14 2012 P, SC SAPIEN /CoreValve 06.2007–04.2011 191 80.5±56.0 21.4±13.4 59.2 15.2 14.1 31.9 27.8 54.3±12.9
Kalavrouziotis 15 2011 P, SC SAPIEN 04.2007–07.2010 35 79.2±9.4 7.5±3.6 18.8±14.1 60.0 31.4 34.3 28.6 17.1 59±13
Kodali1 2012 RCT SAPIEN 05.2007–08.2009 348 83.6±6.8 11.8±3.3 29.3±16.5 74.7 42.5 33.3 42.8 27.6 43.7 52.5±13.5
Makkar16 2012 RCT SAPIEN 05.2007–03.2009 179 83.1±8.6 11.2±5.8 26.4±16.2 67.6 32.4 26.3 30.2 26.8 41.3 53.9±13.1
Moat17 2011 P, SC SAPIEN /CoreValve 01.2007–12.2009 870 81.9±7.1 47.1 29.0 28.7
Ussia18 2012 P, MC CoreValve 06.2007–08.2008 181 80.9±6.1 11.4±9.9 24.0±13.5 53.0 18.8 28.2 14.9 18.8
Walther19 2012 P, SC SAPIEN 02.2006–01.2010 299 82.1±6.4 12.0±7.7 31±15.8 28.1 47.2 18.7 43.1 55±14
Wenaweser20 2011 P, SC SAPIEN /CoreValve 07.2007–09.2010 257 82.1±6.2 6.4±5.0 24.7±24.9 65.0 21.0 22.6 24.9 9.0 51±14
Ye21 2010 P, SC Cribier–Edwards/SAPIEN 10.2005–02.2009 71 80.0±8.1 12.1±7.7 34.5±20.4 74.7 43.7 43.7 85.9 31.0 28.2

CABG, coronary artery bypass grafting; EuroSCORE, European System for Cardiac Operative Risk Evaluation; LVEF, left ventricular ejection fraction; MC, multicenter; P, prospective; PCI, percutaneous coronary intervention; R, retrospective; RCT, randomised controlled trial; SC, single center; STS, Society of Thoracic Surgeons.


[TableWrap ID: BMJOPEN2012001770TB2] Table 2 

Operative data and immediate outcome in patients who underwent transcatheter aortic valve implantation included in this analysis


First author Year Transapical approach (%) Associated PCI (%) Implantation success (%) In-hospital/30-days stroke (%) 30-days mortality (%)
Abdel-Wahab 9 2012 0 44.0 100 6.0 4.0
Attias10 2010 100 0 94.0 4.8 7.2
Bleiziffer11 2012 23.8 2.6 11.5
Buellesfeld12 2011 0 83.3 9.6 15.1
D'Onofrio 13 2011 100 99.2 3.0 8.3
Gasparetto14 2012 30.4 20.4 95.3 1.6 4.2
Kalavrouziotis15 2011 68.6 97.1 0 2.9
Kodali1 2012 30.0 0 94.3 4.6 3.5
Makkar16 2012 0 0 96.7 6.7 5.0
Moat17 2011 26.4 6.3 97.3 4.1 7.1
Ussia18 2012 0 91.7 2.8 11.0
Walther19 2012 100 0.7 8.7
Wenaweser20 2011 21.4 23.4 99.6 3.9 6.6
Ye21 2010 100 100 1.4 16.9

PCI, Percutaneous coronary intervention.



Article Categories:
  • Cardiovascular Medicine
    • Research
Article Categories:
  • 1506
  • 1683
  • 1694


Previous Document:  Occurrence of refeeding syndrome in adults started on artificial nutrition support: prospective coho...
Next Document:  How long has NICE taken to produce Technology Appraisal guidance? A retrospective study to estimate ...