Document Detail

Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Metastatic Potential of Melanoma Xenografts.
MedLine Citation:
PMID:  22381901     Owner:  NLM     Status:  Publisher    
PURPOSE: Gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been suggested as a useful noninvasive method for characterizing the physiologic microenvironment of tumors. In the present study, we investigated whether Gd-DTPA-based DCE-MRI has the potential to provide biomarkers for hypoxia-associated metastatic dissemination. METHODS AND MATERIALS: C-10 and D-12 melanoma xenografts were used as experimental tumor models. Pimonidazole was used as a hypoxia marker. A total of 60 tumors were imaged, and parametric images of K(trans) (volume transfer constant of Gd-DTPA) and v(e) (fractional distribution volume of Gd-DTPA) were produced by pharmacokinetic analysis of the DCE-MRI series. The host mice were killed immediately after DCE-MRI, and the primary tumor and the lungs were resected and prepared for histologic assessment of the fraction of pimonidazole-positive hypoxic tissue and the presence of lung metastases, respectively. RESULTS: Metastases were found in 11 of 26 mice with C-10 tumors and 14 of 34 mice with D-12 tumors. The primary tumors of the metastatic-positive mice had a greater fraction of hypoxic tissue (p = 0.00031, C-10; p < 0.00001, D-12), a lower median K(trans) (p = 0.0011, C-10; p < 0.00001, D-12), and a lower median v(e) (p = 0.014, C-10; p = 0.016, D-12) than the primary tumors of the metastatic-negative mice. CONCLUSIONS: These findings support the clinical attempts to establish DCE-MRI as a method for providing biomarkers for tumor aggressiveness and suggests that primary tumors characterized by low K(trans) and low v(e) values could have a high probability of hypoxia-associated metastatic spread.
Kirsti Marie Ovrebø; Christine Ellingsen; Kanthi Galappathi; Einar K Rofstad
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-2-28
Journal Detail:
Title:  International journal of radiation oncology, biology, physics     Volume:  -     ISSN:  1879-355X     ISO Abbreviation:  -     Publication Date:  2012 Feb 
Date Detail:
Created Date:  2012-3-2     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  7603616     Medline TA:  Int J Radiat Oncol Biol Phys     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2011 Elsevier Inc. All rights reserved.
Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Inhibiting the Aurora B Kinase Potently Suppresses Repopulation During Fractionated Irradiation of H...
Next Document:  Patterns of Practice in Palliative Radiotherapy for Painful Bone Metastases: A Survey in Japan.