Document Detail


Duration estimation entails predicting when.
MedLine Citation:
PMID:  25462792     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
The estimation of duration can be affected by context and surprise. Using MagnetoEncephaloGraphy (MEG), we tested whether increased neural activity during surprise and following neural suppression in two different contexts supported subjective time dilation (Eagleman & Pariyadath, 2009; Pariyadath & Eagleman, 2012). Sequences of three 300ms frequency-modulated (FM, control) or pure tones (test) were presented and followed by a fourth FM varying in duration. In test, the last FM was perceived as significantly longer than veridical duration (Tse, Intriligator, Rivest, & Cavanagh, 2004) but did not differ from the perceived duration in control. Several novel and distinct neural signatures were observed in duration estimation: first, neural suppression of standard stimuli was observed for the onset but not for the offset auditory evoked responses. Second, ramping activity increased with veridical duration in control whereas at the same latency in test, the amplitude of the midlatency response increased with the distance of deviant durations. Third, in both conditions, the amplitude of the offset auditory evoked responses accounted well for participants' performance: the longer the perceived duration, the larger the offset response. Fourth, neural duration demarcated by the peak latencies of the onset and ramping evoked activities indexed a systematic time compression that reliably predicted subjective time perception. Our findings suggest that interval timing undergoes time compression by capitalizing on the predicted offset of an auditory event.
Authors:
Virginie van Wassenhove; Lucille Lecoutre
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-11-13
Journal Detail:
Title:  NeuroImage     Volume:  -     ISSN:  1095-9572     ISO Abbreviation:  Neuroimage     Publication Date:  2014 Nov 
Date Detail:
Created Date:  2014-12-2     Completed Date:  -     Revised Date:  2014-12-3    
Medline Journal Info:
Nlm Unique ID:  9215515     Medline TA:  Neuroimage     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2014 Elsevier Inc. All rights reserved.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  The ventral fiber pathway for pantomime of object use.
Next Document:  Anatomically weighted second-order total variation reconstruction of (23)Na MRI using prior informat...