Document Detail


Downregulation of A(1) and A(2B) adenosine receptors in human trisomy 21 mesenchymal cells from first-trimester chorionic villi.
MedLine Citation:
PMID:  22867902     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Human reproduction is complex and prone to failure. Though causes of miscarriage remain unclear, adenosine, a proangiogenic nucleoside, may help determine pregnancy outcome. Although adenosine receptor (AR) expression has been characterized in euploid pregnancies, no information is available for aneuploidies, which, as prone to spontaneous abortion (SA), are a potential model for shedding light on the mechanism regulating this event. AR expression was investigated in 71 first-trimester chorionic villi (CV) samples and cultured mesenchymal cells (MC) from euploid and TR21 pregnancies, one of the most frequent autosomal aneuploidy, with a view to elucidating their potential role in the modulation of vascular endothelial growth factor (VEGF) and nitric oxide (NO). Compared to euploid cells, reduced A(1) and A(2B) expression was revealed in TR21 CV and MCs. The non-selective adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA) increased NO, by activating, predominantly, A(1)AR and A(2A)AR through a molecular pathway involving hypoxia-inducible-factor-1 (HIF-1α), and increased VEGF, mainly through A(2B). In conclusion the adenosine transduction cascade appears to be disturbed in TR21 through reduced expression of A(2B) and A(1)ARs. These anomalies may be implicated in complications such as fetal growth restriction, malformation and/or SA, well known features of aneuploid pregnancies. Therefore A(1) and A(2B)ARs could be potential biomarkers able to provide an early indication of SA risk and their stimulation may turn out to improve fetoplacental perfusion by increasing NO and VEGF.
Authors:
Stefania Gessi; Stefania Merighi; Angela Stefanelli; Prisco Mirandola; Alessandra Bonfatti; Sergio Fini; Alberto Sensi; Roberto Marci; Katia Varani; Pier Andrea Borea; Fortunato Vesce
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-7-31
Journal Detail:
Title:  Biochimica et biophysica acta     Volume:  -     ISSN:  0006-3002     ISO Abbreviation:  Biochim. Biophys. Acta     Publication Date:  2012 Jul 
Date Detail:
Created Date:  2012-8-7     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0217513     Medline TA:  Biochim Biophys Acta     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012. Published by Elsevier B.V.
Affiliation:
Department of Clinical and Experimental Medicine, Pharmacology Unit and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Crosstalk between the ubiquitin-proteasome system and autophagy in a human cellular model of Alzheim...
Next Document:  RIKEN tandem mass spectral database (ReSpect) for phytochemicals: A plant-specific MS/MS-based data ...