Document Detail


Dopamine is involved in food-anticipatory activity in mice.
MedLine Citation:
PMID:  23010662     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
When food is available during a restricted and predictable time of the day, mammals exhibit food-anticipatory activity (FAA), an increase in locomotor activity preceding the presentation of food. Although many studies have attempted to locate the food-entrainable circadian oscillator in the central nervous system, the pathways that mediate food entrainment are a matter of controversy. The present study was designed to determine the role of dopaminergic and histaminergic systems on FAA. Mice were given access to food for 2 h (ZT12-ZT14), and FAA was defined as the locomotor activity that occurred 2 h before the availability of food. Dopamine D(1) receptor (R), D(2)R, and histamine H(1)R-specific antagonists were used to clarify the role of dopamine and histamine receptors in FAA induced by food restriction (FR). FAA was monitored by infrared locomotor activity sensors. Mice were sacrificed at ZT12 on the 14th day of FR, and monoamine concentrations were determined by high-performance liquid chromatography coupled to electrochemical detection (HPLC-ECD). The results showed that pretreatment with the D(1)R antagonist SCH23390 at 1, 3, or 10 µg/kg significantly reduced FAA by 19% (p < 0.05), 26% (p < 0.05), or 19% (p < 0.01), respectively, and the D(2)R antagonist raclopride at 22, 67, or 200 µg/kg significantly reduced FAA by 16% (p < 0.05), 36% (p < 0.01), or 41% (p < 0.01), respectively, as compared with vehicle control. Moreover, coadministration of SCH23390 (10 µg/kg) and raclopride (200 µg/kg) synergistically inhibited FAA by 57% (p < 0.01) as compared with vehicle control. Consistently, the levels of dopamine and its metabolites in the striatum and midbrain were significantly increased during FAA, even with the pretreatment of D(1)R and D(2)R antagonists. However, pretreatment with pyrilamine at 2.5, 5, or 10 mg/kg did not significantly reduce FAA, although it reduced the locomotor activity during the dark period in ad libitum mice. These results strongly indicate that the dopaminergic system plays an essential role in the FAA in mice.
Authors:
Yuan-Yuan Liu; Tian-Ya Liu; Wei-Min Qu; Zong-Yuan Hong; Yoshihiro Urade; Zhi-Li Huang
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Journal of biological rhythms     Volume:  27     ISSN:  1552-4531     ISO Abbreviation:  J. Biol. Rhythms     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-09-26     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8700115     Medline TA:  J Biol Rhythms     Country:  United States    
Other Details:
Languages:  eng     Pagination:  398-409     Citation Subset:  IM    
Affiliation:
*Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Time of Day Changes in Cyclic Nucleotides Are Modified via Octopamine and Pheromone in Antennae of t...
Next Document:  Individual differences in circadian waveform of Siberian hamsters under multiple lighting conditions...