Document Detail


Diversity of intervertebral disc cells: phenotype and function.
MedLine Citation:
PMID:  22686699     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
The intervertebral disc (IVD) is a moderately moving joint that is located between the bony vertebrae and provides flexibility and load transmission throughout the spinal column. The disc is composed of different but interrelated tissues, including the central highly hydrated nucleus pulposus (NP), the surrounding elastic and fibrous annulus fibrosus (AF), and the cartilaginous endplate (CEP), which provides the connection to the vertebral bodies. Each of these tissues has a different function and consists of a specific matrix structure that is maintained by a cell population with distinct phenotype. Although the healthy IVD is able to balance the slow matrix turnover of synthesis and degradation, this balance is often disturbed, leading to degenerative disorders. Successful therapeutic management of IVD degeneration requires a profound understanding of the cellular and molecular characteristics of the functional IVD. Hence, the phenotype of IVD cells has been of significant interest from multiple perspectives, including development, growth, remodelling, degeneration and repair. One major challenge that complicates our understanding of the disc cells is that both the cellular phenotype and the extracellular matrix strongly depend on disc maturity and health and as a consequence are continuously evolving. This review delineates the diversity of the cell types found in the intervertebral disc, with emphasis on human, but with reference to other species. The cells of the NP appear rounded and express a proteoglycan-rich matrix, whereas the more elongated AF cells are embedded in a collagen fibre matrix and the CEPs represent a layer of cartilage. Even though all disc cells have often been referred to as 'intervertebral disc chondrocytes', distinct phenotypical differences in comparison with articular chondrocytes exist and have been reported recently. The availability of more specific markers has also improved our understanding of progenitor cell differentiation towards an IVD cell phenotype. Ultimately, new cell- and tissue-engineering approaches to regenerative therapies will only be successful if the specific characteristics of the individual tissues and their context in the function of the whole organ, are taken into consideration.
Authors:
Girish Pattappa; Zhen Li; Marianna Peroglio; Nadine Wismer; Mauro Alini; Sibylle Grad
Related Documents :
19691459 - Enhanced expression of podoplanin in ameloblastomas.
21300279 - Molecular regulation of lumen morphogenesis.
4051859 - Synthetic activities of cultured retinal pigment epithelial cells from a patient with r...
22692729 - Differential expression of galectin-1 and its interactions with cells and laminins in t...
21043989 - Ozone induces inflammation in bronchial epithelial cells.
2477349 - Epithelial cell heterogeneity in mammalian thymus: monoclonal antibody to high molecula...
10729019 - Effect of growth hormone and induced igf-i release on germ cell population and apoptosi...
11920719 - Distribution and morphology of transgenic mouse oligodendroglial-lineage cells followin...
8747839 - Reactions of astrocytes and microglial cells around hematogenous metastases of the huma...
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-6-11
Journal Detail:
Title:  Journal of anatomy     Volume:  -     ISSN:  1469-7580     ISO Abbreviation:  -     Publication Date:  2012 Jun 
Date Detail:
Created Date:  2012-6-12     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0137162     Medline TA:  J Anat     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
© 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.
Affiliation:
AO Research Institute Davos, Davos, Switzerland.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Ab Initio Ground and Excited State Intermolecular Potential Energy Surfaces for the NO--Ne and Ar va...
Next Document:  Ocular Problems in the Patient with End-Stage Renal Disease.