Document Detail


Disruption of an hTERT-mTOR-RAPTOR protein complex by a phytochemical perillyl alcohol and rapamycin.
MedLine Citation:
PMID:  23283642     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
We previously demonstrated in prostate cancer cells that a phytochemical-perillyl alcohol-and the mechanistic target of rapamycin (mTOR) inhibitor rapamycin rapidly attenuated telomerase activity. Protein levels of the telomerase catalytic subunit reverse transcriptase (hTERT) were diminished in the absence of an effect on hTERT mRNA, supporting an effect on 4E-BP1 phosphorylation and reduced initiation of protein translation. The decline in hTERT protein did not coincide wholly, however, with loss of telomerase activity suggesting a further level of regulation. We hypothesized that a hTERT-mTOR-S6K (S6 kinase)-Hsp90 (Heat shock protein 90)-Akt complex previously detected in activated NK cells was present in DU145 prostate cancer cells. Furthermore, we postulated that both perillyl alcohol and rapamycin disrupted this complex to control telomerase activity post-translationally. Antibodies directed against either RAPTOR, a binding partner of mTOR, or mTOR itself co-immunoprecipitated Hsp90, hTERT, and S6K confirming a similar TERT complex in prostate cancer cells. Perillyl alcohol or rapamycin caused rapid dissociation of the captured hTERT-mTOR-RAPTOR complex, establishing an additional mechanism by which these agents decrease telomerase activity. These findings provide convincing evidence for mTOR-mediated regulation of hTERT in DU145 cells.
Authors:
Tabetha Sundin; Dennis M Peffley; Patricia Hentosh
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-3
Journal Detail:
Title:  Molecular and cellular biochemistry     Volume:  -     ISSN:  1573-4919     ISO Abbreviation:  Mol. Cell. Biochem.     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-1-3     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0364456     Medline TA:  Mol Cell Biochem     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
Department of Medical Diagnostic and Translational Sciences, Old Dominion University, 4608 Hampton Blvd., Norfolk, VA, 23529, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Comparison between the radionuclide salivagram and videofluoroscopic swallowing study methods for ev...
Next Document:  Detection of movement-related cortical potentials based on subject-independent training.