Document Detail

Dip of the granular shear stress.
MedLine Citation:
PMID:  23367937     Owner:  NLM     Status:  Publisher    
Recent experiments reveal an unexpected dip of the shear stress as the shear rate increases, from the rate-independent regime to Bagnold flow. Employing granular solid hydrodynamics, it is shown that in uniform systems, such dips occur for given pressure or normal stress, but not for given density. If the shear rate is strongly nonuniform, enforcing a constant volume does not prevent the local density to vary, and a stress dip may still occur.
Dmitry O Krimer; Stefan Mahle; Mario Liu
Related Documents :
6279217 - The role of presynaptic alpha-adrenoceptors in the regulation of blood pressure in the ...
10472237 - I.v. clonidine: does it work as a hypotensive agent with inhalation anaesthesia?
2347907 - Decreased sensitivity to alpha-adrenergic stimulation in hypothyroid patients.
15777307 - Clonidine as an adjuvant for lidocaine in axillary brachial plexus block in patients wi...
3605507 - Surgical treatment of the gastroesophageal reflux syndrome in infants and children.
10829727 - Dependence of single-bubble sonoluminescence on ambient pressure
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-12-17
Journal Detail:
Title:  Physical review. E, Statistical, nonlinear, and soft matter physics     Volume:  86     ISSN:  1550-2376     ISO Abbreviation:  Phys Rev E Stat Nonlin Soft Matter Phys     Publication Date:  2012 Dec 
Date Detail:
Created Date:  2013-2-1     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101136452     Medline TA:  Phys Rev E Stat Nonlin Soft Matter Phys     Country:  -    
Other Details:
Languages:  ENG     Pagination:  061312     Citation Subset:  -    
Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Jamming of particles in a two-dimensional fluid-driven flow.
Next Document:  Impact on porous targets: Penetration, crater formation, target compaction, and ejection.