Document Detail


Dip of the granular shear stress.
MedLine Citation:
PMID:  23367937     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Recent experiments reveal an unexpected dip of the shear stress as the shear rate increases, from the rate-independent regime to Bagnold flow. Employing granular solid hydrodynamics, it is shown that in uniform systems, such dips occur for given pressure or normal stress, but not for given density. If the shear rate is strongly nonuniform, enforcing a constant volume does not prevent the local density to vary, and a stress dip may still occur.
Authors:
Dmitry O Krimer; Stefan Mahle; Mario Liu
Related Documents :
3720837 - An endogenous, non-catecholamine clonidine antagonist increases mean arterial blood pre...
3418777 - Clonidine interaction in amitriptyline poisoning.
2565967 - The effects of b-ht 920 and st 91 on venous haemodynamics in cats.
9690597 - Unusually prolonged duration of spinal anesthesia following 2% mepivacaine.
9155297 - Pressure sores: incidence, risk assessment and prevention.
6452127 - Early metabolic alterations during the development of experimentally induced cardiac hy...
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-12-17
Journal Detail:
Title:  Physical review. E, Statistical, nonlinear, and soft matter physics     Volume:  86     ISSN:  1550-2376     ISO Abbreviation:  Phys Rev E Stat Nonlin Soft Matter Phys     Publication Date:  2012 Dec 
Date Detail:
Created Date:  2013-2-1     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101136452     Medline TA:  Phys Rev E Stat Nonlin Soft Matter Phys     Country:  -    
Other Details:
Languages:  ENG     Pagination:  061312     Citation Subset:  -    
Affiliation:
Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Jamming of particles in a two-dimensional fluid-driven flow.
Next Document:  Impact on porous targets: Penetration, crater formation, target compaction, and ejection.