Document Detail


Dihydrotestosterone Attenuates Hypoxia Inducible Factor-1alpha and Cyclooxygenase-2 in Cerebral Arteries during Hypoxia or Hypoxia with Glucose Deprivation.
MedLine Citation:
PMID:  21856910     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Dihydrotestosterone (DHT) attenuates cytokine-induced cyclooxygenase-2 (COX-2) in coronary vascular smooth muscle. Since hypoxia inducible factor-1alpha (HIF-1α) activation can lead to COX-2 production, this study determined the influence of DHT on HIF-1α and COX-2 following hypoxia or hypoxia with glucose deprivation (HGD) in the cerebral vasculature. COX-2 and HIF-1α levels were assessed via western blot and HIF-1α activation was indirectly measured via a DNA binding assay. Experiments were performed using cerebral arteries isolated from castrated male rats treated in vivo with placebo or DHT (18 days) followed by hypoxic exposure ex vivo (1% O2), cerebral arteries isolated from castrated male rats treated ex vivo with vehicle or DHT (10 or 100 nM; 6 h) then exposed to hypoxia ex vivo (1% O2), or primary human brain vascular smooth muscle cells treated with DHT (10 nM; 6 h) or vehicle then exposed to hypoxia or HGD. Under normoxic conditions, DHT increased COX-2 (Cells 51%; arteries ex vivo 31%; arteries in vivo 161%) but had no effect on HIF-1α. Following hypoxia or HGD, HIF-1α and COX-2 levels were increased; this response was blunted by DHT (Cells HGD: -47% COX-2, -34% HIF-1α; Cells hypoxia: -29% COX-2, -54% HIF-1α; arteries ex vivo: -37% COX-2; arteries in vivo: -35% COX-2) and not reversed by androgen receptor blockade. Hypoxia-induced HIF-1α DNA-binding was also attenuated by DHT (arteries ex vivo and in vivo: -55%). These results demonstrate that upregulation of COX-2 and HIF-1α in response to hypoxia is suppressed by DHT via an androgen receptor independent mechanism.
Authors:
Kristen L Zuloaga; Rayna J Gonzales
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2011-8-19
Journal Detail:
Title:  American journal of physiology. Heart and circulatory physiology     Volume:  -     ISSN:  1522-1539     ISO Abbreviation:  -     Publication Date:  2011 Aug 
Date Detail:
Created Date:  2011-8-22     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  100901228     Medline TA:  Am J Physiol Heart Circ Physiol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
1University of Arizona-Phoenix.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Pathophysiology of Myocardial Reperfusion Injury: Preconditioning, Postconditioning and Translationa...
Next Document:  MicroRNA-1 transfected embryonic stem cells enhance cardiac myocyte differentiation and inhibit apop...