Document Detail


Differential acid-base regulation in various gills of the green crab Carcinus maenas: Effects of elevated environmental pCO(2).
MedLine Citation:
PMID:  23022520     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Euryhaline decapod crustaceans possess an efficient regulation apparatus located in the gill epithelia, providing a high adaptation potential to varying environmental abiotic conditions. Even though many studies focussed on the osmoregulatory capacity of the gills, acid-base regulatory mechanisms have obtained much less attention. In the present study, underlying principles and effects of elevated pCO(2) on acid-base regulatory patterns were investigated in the green crab Carcinus maenas acclimated to diluted seawater. In gill perfusion experiments, all investigated gills 4-9 were observed to up-regulate the pH of the hemolymph by 0.1 - 0.2 units. Anterior gills, especially gill 4, were identified to be most efficient in the equivalent proton excretion rate. Ammonia excretion rates mirrored this pattern among gills, indicating a linkage between both processes. In specimen exposed to elevated pCO(2) levels for at least 7days, mimicking a future ocean scenario as predicted until the year 2300, hemolymph K(+) and ammonia concentrations were significantly elevated, and an increased ammonia excretion rate was observed. A detailed quantitative gene expression analysis revealed that upon elevated pCO(2) exposure, mRNA levels of transcripts hypothesized to be involved in ammonia and acid-base regulation (Rhesus-like protein, membrane-bound carbonic anhydrase, Na(+)/K(+)-ATPase) were affected predominantly in the non-osmoregulating anterior gills.
Authors:
Sandra Fehsenfeld; Dirk Weihrauch
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-9-26
Journal Detail:
Title:  Comparative biochemistry and physiology. Part A, Molecular & integrative physiology     Volume:  -     ISSN:  1531-4332     ISO Abbreviation:  Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.     Publication Date:  2012 Sep 
Date Detail:
Created Date:  2012-10-1     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9806096     Medline TA:  Comp Biochem Physiol A Mol Integr Physiol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012. Published by Elsevier Inc.
Affiliation:
Department of Biological Sciences, University of Manitoba, 190 Dysart Road, Winnipeg, MB, Canada R3T2N2. Electronic address: umfehsen@cc.umanitoba.ca.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Should epidermal growth factor receptor tyrosine kinase inhibitors be considered ideal drugs for the...
Next Document:  A rapid method to assess the stage differentiation in Leishmania donovani by flow cytometry.