Document Detail

Different BAG-1 isoforms have distinct functions in modulating chemotherapeutic-induced apoptosis in breast cancer cells.
Jump to Full Text
MedLine Citation:
PMID:  19151744     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
AIM: BAG-1 is a multifunctional anti-apoptotic gene with four isoforms, and different BAG-1 isoforms have different anti-apoptotic functions. In this study, we transfected BAG-1 isoforms into the human breast cancer cell lines Hs578T (ER negative) and MCF-7 (ER positive) to study their effect on apoptosis with or without estrogens.
METHODS: The constructed recombinant expression vectors carrying individual BAG-1 isoforms was used to transfect human breast cancer cell lines Hs578T (ER negative) and MCF-7 (ER positive). After stable cell lines were made, a variety of apoptosis-inducing agents, including doxorubicin, docetaxel, and 5-FU, was used to treat these cell lines with or without estrogen to test the role of BAG-1. The mechanism by which BAG-1 affected the function of Bcl-2 was exploredby using the cycloheximide chase assay.
RESULTS: The BAG-1 p50 and p46 isoforms significantly enhanced the resistance to apoptosis in both cell lines according to flow cytometry analysis. BAG-1 p33 and p29 failed to protect the transfected cells from apoptosis. The cell viability assay showed that only BAG-1 p50, but not p46, p33, or p29, increased estrogen-dependent function in ER-positive cell line MCF-7. Only BAG-1 p50 dramatically increased its anti-apoptotic ability in the presence of estrogen, while estrogen has very little effect on the anti-apoptotic ability of other BAG-1 isoforms. In the detection of the expression of K-ras, Hsp70, cytochrome c, Raf-1, ER-alpha, and Bcl-2 in MCF-7 cells by Western blot, only Bcl-2 protein expression was significantly increased in MCF-7 cells transfected with BAG-1 p50 and p46, respectively. Furthermore, the cycloheximide chase assay indicated that the degradation of Bcl-2 protein was extended in the BAG-1 p50 and p46 transfected MCF-7 cells.
CONCLUSION: Distinct isoforms of BAG-1 have different anti-apoptotic functions in breast cancer cells, and that the BAG-1 p50 isoform can potentiate the role of estrogen in ER-positive breast cancer.
Authors:
Hong-Yu Liu; Zhuo-Min Wang; Yun Bai; Min Wang; Ying Li; Sen Wei; Qing-Hua Zhou; Jun Chen
Related Documents :
8793854 - Molecular and cellular responses to dna damage in a murine pituitary adenoma cell line.
7692234 - Neither macromolecular synthesis nor myc is required for cell death via the mechanism t...
20664954 - Tanshinone iia inhibits hep-j5 cells by increasing calreticulin, caspase 12 and gadd153...
11269744 - Cryptophycin-induced hyperphosphorylation of bcl-2, cell cycle arrest and growth inhibi...
20519324 - Embryonic germ cells from mice and rats exhibit properties consistent with a generic pl...
22427054 - Role of pkc-erk signaling in tamoxifen-induced apoptosis and tamoxifen resistance in hu...
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2009-01-19
Journal Detail:
Title:  Acta pharmacologica Sinica     Volume:  30     ISSN:  1745-7254     ISO Abbreviation:  Acta Pharmacol. Sin.     Publication Date:  2009 Feb 
Date Detail:
Created Date:  2009-02-05     Completed Date:  2009-04-28     Revised Date:  2014-09-20    
Medline Journal Info:
Nlm Unique ID:  100956087     Medline TA:  Acta Pharmacol Sin     Country:  China    
Other Details:
Languages:  eng     Pagination:  235-41     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Antineoplastic Agents / therapeutic use*
Apoptosis / physiology*
Breast Neoplasms* / drug therapy,  pathology
Cell Line, Tumor
DNA-Binding Proteins / genetics,  metabolism*
Estrogens / metabolism
Female
Humans
Protein Isoforms / genetics,  metabolism*
Receptors, Estrogen / metabolism
Transcription Factors / genetics,  metabolism*
Chemical
Reg. No./Substance:
0/Antineoplastic Agents; 0/BCL2-associated athanogene 1 protein; 0/DNA-Binding Proteins; 0/Estrogens; 0/Protein Isoforms; 0/Receptors, Estrogen; 0/Transcription Factors

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Acta Pharmacol Sin
Journal ID (iso-abbrev): Acta Pharmacol. Sin
ISSN: 1671-4083
ISSN: 1745-7254
Publisher: Nature Publishing Group
Article Information
Download PDF
Copyright © 2009 CPS and SIMM
Received Day: 01 Month: 11 Year: 2008
Accepted Day: 02 Month: 12 Year: 2008
Print publication date: Month: 02 Year: 2009
Electronic publication date: Day: 19 Month: 01 Year: 2009
Volume: 30 Issue: 2
First Page: 235 Last Page: 241
PubMed Id: 19151744
ID: 4002464
Publisher Item Identifier: aps200821
DOI: 10.1038/aps.2008.21

Different BAG-1 isoforms have distinct functions in modulating chemotherapeutic-induced apoptosis in breast cancer cells
Hong-yu Liu1#
Zhuo-min Wang2#
Yun Bai1
Min Wang1
Ying Li1
Sen Wei1
Qing-hua Zhou1*
Jun Chen1*
1Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
2The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
*E-mail: zhouqh1016@yahoo.com.cn
*E-mail: huntercj2004@yahoo.com
#Hong-yu Liu and Zhuo-min Wang contributed equally to this paper.

Introduction

Breast cancer is the most common cancer to affect women. In 2007, it is estimated that about 240,510 new cases of breast cancer were diagnosed in the United States. Estrogen plays an important role in the development of breast cancer. Breast cell growth — both normal and abnormal — is stimulated by the presence of estrogen. Estrogen is mediated by estrogen receptors through estrogen response elements (ERE) and functions as a ligand-dependent transcription factor. Hormonal therapy is a very effective treatment against breast cancer with hormone receptor-positive patients, which blocks the ability of estrogen to turn on and stimulate the growth of breast cancer cells. Therefore, it is very important to identify the factors that influence ER function and understand the roles that estrogen may play in the development of breast cancer.

BAG-1 is a recently identified multifunctional anti-apoptotic protein that binds to Bcl-21 and RAF-1 serine/threonine kinase2. BAG-1 cooperates with Bcl-2 to inhibit apoptosis triggered by a variety of apoptotic agents. To date, four isoforms of BAG-1 protein have been reported, each having different anti-apoptotic functions in different cell lines. BAG-1 has been observed to bind to proteins from four different subcellular compartments: cytosolic domains of tyrosine kinase HGF/PDGF receptors on outer cell membranes, Bcl-2 on inner cell membranes, cytosolic Hsps, RAF-1 and nuclear hormone receptors. However, the significance of these associations in regulating apoptosis is poorly understood. The interaction between BAG-1 and Bcl-2 likely plays an essential role in BAG-1-regulated apoptosis, although other BAG-1-interactive proteins may also be important. Recently, studies have also shown that forced expression of BAG-1 in cervical cancer cells leads to increased Bcl-2 production, while downregulation of BAG-1 expression by antisense BAG-1 results in the opposite3, 4. BAG-1 potentiates the ability of Bcl-2 to inhibit apoptosis, but the exact mechanism by which BAG-1 co-expresses with Bcl-2 is currently unknown. BAG-1 may affect the function of Bcl-2 by modulating its expression either at the transcriptional or post-translation level. The increased expression of Bcl-2 in cells transfected with BAG-1 suggests that intact BAG-1 function may be required to inhibit Bcl-2 protein degradation. In addition, a retrospective study was recently conducted by using 185 paraffin-embedded breast tumor tissues. The study indicated that a majority (86.0%) of breast cancers over-expressed BAG-1 and that most (85.5%) of those positive for BAG-1 staining were cytoplasmic. Interestingly, statistical analysis indicated that BAG-1 expression was correlated with that of Bcl-2, p53, estrogen receptor (ER) and progesterone receptors5. Furthermore, interaction of BAG-1 with estrogen receptor (ER) stimulates the transcriptional activity of ERα and ERβ6. It is possible that BAG-1 may affect the development of breast cancer through modulating the function of ER, and therefore it is very important to address the function of BAG-1 on estrogen receptors in breast cancer.

In this study, we used the constructed recombinant expression vectors carrying individual BAG-1 isoforms to transfect human breast cancer cell lines Hs578T (ER negative) and MCF-7 (ER positive). After stable cell lines were made, we used a variety of apoptosis-inducing agents, including doxorubicin, docetaxel, and 5-FU, to treat these cell lines in the presence or absence of estrogen to test the role of BAG-1. Furthermore, we also explored the mechanism by which BAG-1 affected the function of Bcl-2 by using the cycloheximide chase assay.


Materials and methods
Construction of the recombinant plasmids carrying the four BAG-1 isoforms

All the structures of human BAG-1 isoforms have been described, and plasmids containing BAG-1 p50, p46, p33 and p29 were constructed as described previously3, 7.

Cell culture and transfection

Human breast cancer cell lines MCF-7 and Hs578T were purchased from Cell Line Service. MCF-7 cells were grown in Minimum Essential Medium (MEM, Gibco), and Hs578T cells were grown in Dulbecco's modified Eagle's medium (DMEM, Gibco) supplemented with penicillin/streptomycin (180 IU/mL) in 10% (v/v) heat-inactivated fetal calf serum (FCS) and 1% (v/v) L-glutamine. They were incubated in a humidified atmosphere with 5% CO2 in air at 37 °C. DNA transfection was carried out using the Effectene Transfection Kit (Qiagen) according to the manufacturer's instructions. Briefly, cells (5×104 cells/well) were seeded into 6-well plates and incubated at 37 °C in 5% CO2 overnight. Next day, 0.5 μg of plasmid DNA was mixed with Effectene Transfection Reagent and added onto the cell monolayer. The cells were then further incubated for an additional 48 h. Stable transfectants were selected in selective medium containing 0.6 mg/mL G418 (Gibco BRL) and maintained in the same medium for use.

Cell viability assay

Cells were seeded (5 ×103 cells/well) into 96-well plates and incubated for 24 h, and then the cells were treated with 10 pmol/L 17-β estradiol for 24 h. Cell viability was defined as the fold increase of BAG-1 distinct isoform-transfected cells compared with the control cells in the presence of 17-β estradiol by using the CellTiter 96® Aqueous One Solution Reagent assay. Control transfectant was used as the standard. Each experiment was performed in triplicate and repeated at least three times.

To reduce endogenous estrogen-like activity, phenol red-free DMEM medium (Gibco BRL.) supplemented with 5% dextran-coated charcoal-stripped FBS (Hyclone, Logan, UT, USA) (estrogen-deprived medium) was used.

Flow cytometry analysis of apoptotic cells

To determine the effect of distinct isoforms of BAG-1 protein on apoptosis, 1×105 cells/well were seeded into 6-well plates and incubated for 24 h, and then the cells were treated with doxorubicin (0.5 μmol/L), docetaxel (0.1 μmol/L), and 5-FU (150 μmol/L) for 48 h. Cells were stained using the Annexin V-FITC Apoptosis Analysis Kit (PharMingen) and subjected to a FACStar Plus flow cytometer (Becton Dickinson) to sort out the Annexin V-FITC stained apoptotic cells. Data was analyzed with WIMDI 2.8 software. The apoptotic cells (M1) were calculated as the percentage of apoptotic cells in the treated cell population minus the percentage of apoptotic cells in the untreated control cell population.

Western blot analysis

Cellular protein extraction and Western blot analyses were performed as previously described3. Briefly, 20 μg of protein was fractionated using 10%–12% SDS-PAGE and transferred onto Hybond Enhanced Chemiluminescence (ECL) nitrocellulose membranes under semidry conditions. Immunodetection was performed using the ECL system (Amersham Pharmacia Biotech). Monoclonal antibodies against K-ras, Hsp70, cytochrome c, Raf-1, ER-α, Bcl-2, BAG-1 and β-actin were purchased from Santa Cruz.

Cycloheximide chase assay

To determine the change of Bcl-2 protein stability in BAG-1 transfected cell lines, the cycloheximide chase assay was performed. In brief, 100 μg/mL of cycloheximide (Biomol, Plymouth Meeting, PA) was added to about 60% semi-confluence cells on 100-mm plates for 24 h. An equal number of cells was harvested at various time points. The amount of Bcl-2 at each time point was analyzed by Western blot with an anti-Bcl-2 antibody.

Statistical analysis

For cell flow cytometry, each experiment was performed in triplicate and repeated three times. For the cell viability assay, each experiment was performed in triplicate and repeated at least three times. Data were analyzed using the Student's t-test. A P≤0.05 was considered statistically significant.


Results and discussion
Expression of distinct isoforms of BAG-1 in MCF-7 and Hs578T cells

BAG-1 has four isoforms (p50, p46, p33 and p29), which have distinct N-termini8. The largest isoform, p50, contains a nuclear localization sequence in the N-terminal extension and resides in the nucleus, while isoform p46 contains only a small part of the nuclear localization sequence and is found in both the nucleus and cytoplasm. The most abundant isoform is p33 and the smallest isoform is p29, both of which are without any nuclear localization sequence, and are found predominantly in the cytoplasm. Since the four isoforms are generated from a single mRNA transcript7, translational regulation is thought to play a major role in the control of their expression. The native BAG-1 mRNA carries four protein translation start codons, and each start codon lacks the perfect Kozak sequence7. It has been shown that initiation of the synthesis of the four isoforms of BAG-1 occurs by an alternative mechanism7. As previously described3, we constructed recombinant plasmids carrying individual BAG-1 cDNA, with each start codon surrounded by a perfect Kozak sequence. We used the human breast cancer cell lines Hs578T (ER negative) and MCF-7 (ER positive), which both express low levels of BAG-1. After stable transfection and colony selection, cellular proteins were extracted to verify the expression of the distinct isoforms of BAG-1 in the transfectants by Western blot. Transfection with the BAG-1 isoforms p50, p46, p33, p29 generated the desired isoforms because of the existence of the perfect Kozak sequence (Figure 1).

BAG-1 p50 and p46, but not p33 and p29, inhibit apoptosis in breast cancer cell lines

BAG-1 is known to protect cells from a wide range of apoptotic stimuli9, 10. Different BAG-1 isoforms have been reported to have different effects on heat shock protein function11 and to possess different transcriptional activities12, 13. Further studies have indicated that distinct BAG-1 isoforms have different anti-apoptotic functions in human cervical carcinoma cells. BAG-1 p50 and p46 isoforms enhanced the resistance to apoptosis in transfected cells, while BAG-1 p29 failed to protect the transfected cells from apoptosis3. It is still unclear whether the over-expression of BAG-1 alone is sufficient to inhibit apoptosis, or whether its anti-apoptotic function requires the presence of Bcl-2, as well as whether the functions of different BAG-1 isoforms in different tissues are different.

To examine the role of BAG-1 isoforms in anti-apoptotic activity in breast cancer cell lines, BAG-1-transfected Hs578T and MCF-7 cells were treated with a variety of apoptosis-inducing agents, including doxorubicin (0.5 μmol/L), docetaxel (0.1 μmol/L), and 5-FU (150 μmol/L). After 48-h incubation, cell apoptosis was assessed with Annexin-V FITC by cell flow cytometry. The FITC-positive apoptotic cells were expressed as the percentage of apoptotic cells over the total number of treated cells minus the percentage of apoptotic cells of the untreated cells, as shown in Figure 2. Compared to the NEO-transfected control cells, the MCF-7 cells transfected with BAG-1 p50 and p46 exhibited significant resistance to apoptosis when treated with doxorubicin (32.77%, 28.98% vs 58.76%, P<0.05), docetaxel (31.68%, 32.77% vs 56.38%, P<0.05) and 5-FU (47.37%, 40.47% vs 63%, P<0.05). Hs578T cells transfected with BAG-1 p50 and p46 also showed a similar increased resistance to apoptosis when treated with doxorubicin (17.7%, 14.8% vs 38.98%, P<0.05), docetaxel (18.7%, 23.48% vs 41.68%, P<0.05) and 5-FU (26.08%, 23% vs 39.77%, P<0.05). Both cell lines transfected with BAG-1 p33 and p29 showed no significant change in their sensitivity to apoptosis when compared to the NEO-transfected control cells treated with doxorubicin (MCF-7: 50.68%, 56.74% vs 58.76%, P>0.05; Hs578T: 31.1%, 34.8% vs 38.98%, P>0.05), docetaxel (MCT-7: 51.76%, 54.76% vs 56.38%, P>0.05; Hs578T: 30.01%, 39.8% vs 41.68%, P>0.05) and 5-FU (MCF-7: 57.64%, 54.77% vs 63%, P>0.05; Hs578T: 38.8%, 36.8% vs 39.77%, P>0.05). These results indicate that distinct BAG-1 isoforms have different anti-apoptotic functions in breast cancer cell lines MCF-7 and Hs578T. BAG-1 p50 and p46 exhibited a significant degree of anti-apoptotic activity (P<0.05), while BAG-1 p33 and p29 had little effect. These results were very similar to those of our previous studies on a human cervical cancer cell line3.

BAG-1 p50, but not p46, p33, and p29, increases MCF-7 cell viability in the presence of estrogen

Estrogens play an important role in development of breast cancer and stimulate the proliferation and survival of breast cancer cells. The action of estrogens is mediated by estrogen receptors (ERs). Adjuvant hormonal therapies such as tamoxifen counter the actions of estrogens and reduce the probability of death and recurrence in those with estrogen receptor positive cancer. BAG-1 is a multifunctional anti-apoptotic protein, and our previous studies indicated that BAG-1 expression was correlated with ER in breast cancer tissues5. To test the role of estrogen with BAG-1 isoforms, we added 10 pmol/L 17-β estradiol into MCF-7 and Hs578T cell lines transfected with different BAG-1 isoforms, and then performed cell viability assays after 24 h. The results, shown in Figure 2, indicate that in the presence of estrogen, the cell viability in MCF-7 cells transfected with BAG-1 p50 (3.18 fold), but not with p46 (1.614 fold), p33 (1.085 fold) and p29 (0.9985 fold), was significantly increased compared to the control cells, while there was no significant change in Hs578T cells transfected with distinct BAG-1 isoforms (Figure 3). This result indicated that only BAG-1 p50 potentiated the estrogen-dependent signal pathway and enhanced the function of estrogen in the ER-positive cell line MCF-7. Furthermore, to test the role of estrogen with stimuli, MCF-7 cells transfected with different BAG-1 isoforms were treated with chemotherapeutic agents in the presence of 10 pmol/L 17-β estradiol. As shown in Figure 4, compared with the NEO-transfected control cells, the BAG-1 p50 transfected MCF-7 cells exhibited the strongest resistance to apoptosis in the presence of estrogen when treated with doxorubicin (4.77% vs 49.9%, P<0.05), docetaxel (9.68% vs 51.67%, P<0.05) and 5-FU (28.76% vs 54.76%, P<0.05), which indicated that its role in resistance to apoptosis in the presence of estrogen was much stronger than that without estrogen. Compared to the NEO-transfected control cells, cells transfected with BAG-1 p46 had significantly increased resistance to apoptosis in the presence of estrogen when treated with doxorubicin (22.76% vs 49.9%, P<0.05), docetaxel (29.76% vs 51.67%, P<0.05) and 5-FU 34.77% vs 54.76%, P<0.05), but the role of BAG-1 in the presence of estrogen was very similar to that without estrogen. The MCF-7 cells transfected with BAG-1 p33 and p29, even in the presence of estrogen, showed no change in their sensitivity to apoptosis compared to the NEO-transfected control cells when treated with doxorubicin (46.74%, 50.74% vs 49.9%, P<0.05), docetaxel (51.76%, 52.76% vs 51.67%, P<0.05) and 5-FU (53.76%, 54.76% vs 54.76%, P<0.05). These results indicate that only BAG-1 p50 can potentiate the role of estrogen in the ER-positive cell line MCF-7, and are similar to findings of other reports that BAG-1 p50 can interact with ER and increase estrogen-dependent transcription6.

The different anti-apoptotic function of BAG-1 isoforms may be due to their structural differences. All four BAG-1 isoforms have a common C-terminus, which contains the BAG domain14 that interacts with Hsp7015, 16, Bcl-217 and hepatocyte growth factor (HGF) receptor9. BAG-1 p50 has the complete nuclear localization sequence, whereas BAG-1 p46 has only a partial nuclear localization sequence (NLS), which explains the common and occasional nuclear expression of BAG-1 p50 and BAG-1 p46, respectively. BAG-1 p46 is produced mainly as a cytosolic protein, and BAG-1 p33 and BAG-1 p29 are always produced in the cytosol7. The exact mechanism by which BAG-1 participates in anti-apoptotic activity is unknown. As described in our previous reports, the differential anti-apoptotic function of different BAG-1 isoforms suggests that the N-terminus of the protein is important for its function. Previous reports have indicated that the N-terminus was important for BAG-1 to bind to hormone receptors18, 19, transcription factors such as c-Fos20 and certain DNA promoters, such as the CMV promoter21. There is a hexapeptide repeat region in BAG-1 N-terminus. BAG-1 p50 and p46 share a complete sequence, BAG-1 p33 shares a partial sequence, and p29 lacks this region altogether22. Although the function of this hexapeptide repeat region is unclear, it is tempting to speculate that this hexapeptide repeat region is implicated in the anti-apoptotic function of BAG-1, since BAG-1 p50 and p46 with the complete hexapeptide repeat have strong anti-apoptotic function. Deletion of this region renders the protein highly unstable22. The increased anti-apoptotic ability of BAG-1 p50 in the presence of estrogen in ER-positive cells may be due to the interaction between BAG-1 p50 and ER, given that BAG-1 p50 is the only isoform that directly interacts with ER and potentiates estrogen-dependent transcription6.

Increased expression of Bcl-2 in MCF-7 and Hs578T cells transfected with BAG-1 p50 and p46, but not with p33 and p29

To investigate why the overexpression of BAG-1 isoforms lead to the differential resistance to apoptosis induced by different chemotherapeutic agents in transfected cells, we examined the expression of a group of apoptotic regulating proteins-K-ras, Hsp70, cytochrome c, Raf-1, ER-α, and Bcl-2 - in MCF-7 cells stably transfected with the BAG-1 isoforms by Western blot analysis. Compared with the control cells transfected with NEO, transfection with BAG-1 p50 and p46, but not p33 and p29, led to the increased expression of Bcl-2. The expression of all other apoptotic proteins, including K-ras, Hsp70, cytochrome c, Raf-1 and ER-α, remained no significant change (Figure 5). β-actin was used as an internal control for protein quantity in each experiment. Our previous studies demonstrated that the increased expression of Bcl-2 was likely due to decreased Bcl-2 protein degradation, and not to the increased mRNA transcription, since Bcl-2 mRNA remained essentially unchanged after transfection with native BAG-1 and the BAG-1 isoforms compared to the NEO-transfected control cells by Northern blotting3. Next, the pulse-chase assay was employed to analyze the effect of BAG-1 isoforms on the translation level Bcl-2 protein and its protein stability. As shown in Figure 6A–B, the stability of Bcl-2 protein in the BAG-1 high expression cell line MDA-MB231, but not in the BAG-1 low expression cell line MCF-7, was extended. Furthermore, the stability of Bcl-2 in MCF-7 cells transfected with BAG-1 p50 and p46, but not p33, p29 and the NEO control, was increased. The results indicated that the BAG-1 p50 and p46 isoforms affected Bcl-2 protein stability and increased the level of Bcl-2 protein (Figure 6C).

Except for Bcl-2, transfection of BAG-1 does not change the expression of its related proteins, such as Hsp70, K-ras, cytochrome c, ER-α, and Raf-1. Bcl-2 protein expression was increased in cells transfected with BAG-1 p50 and p46, but not p33 and p29 or NEO, which is consistent with our previous data. Since our previous study showed that the expression of Bcl-2 mRNA did not change after transfection with BAG-1, we proposed that the forced expression of certain BAG-1 isoforms might be decreased by Bcl-2 protein degradation. In this study, the protein stability of Bcl-2 in MCF-7 cells transfected with BAG-1 p50 and p46, but not p33, p29 and the Neo control, was confirmed to be increased by the pulse-chase assay. All BAG-1 isoforms share a common C-terminus that binds to Hsp, Bcl-2 and the proteasome. The increased expression of Bcl-2 in cells transfected with BAG-1 p50 and p46, but not BAG-1 p33 and p29, suggests that intact BAG-1 function is required for the inhibition of Bcl-2 protein degradation mediated by BAG-1. BAG-1 has been reported to cooperate with Bcl-2 to inhibit apoptosis1.

In summary, our data demonstrate that distinct BAG-1 isoforms have different anti-apoptotic functions in breast cancer cell lines and that the BAG-1 p50 and p46 isoforms enhance resistance to apoptosis. BAG-1 p50 is the only isoform that can potentiate estrogen-dependent ER function. The anti-apoptotic function of BAG-1 isoforms may be correlated to increased Bcl-2 expression, which may be mediated through decreased Bcl-2 protein degradation.


Author contribution

Hong-yu LIU performed research, analyzed data, and wrote the paper; Zhuo-min WANG performed research, analyzed data; Yun BAI, Min WANG, Ying LI and Sen WEI performed research; Qing-hua ZHOU designed the study, analyzed the data and wrote the paper; Jun CHEN designed the study, performed research, analyzed data, and wrote the manuscript.


This work was supported by grants from the National Natural Science Foundation of China (No 30500221 to Jun CHEN; No 30500496 to Hong-yu LIU). We also acknowledge the National Key Technology Research and Development Program of China (No 2006BAI02A00, Qing-hua ZHOU).


References
Takayama S,Sato T,Krajewski S,Kochel K,Irie S,Millan JA,et al. Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activityCellYear: 199580279847834747
Wang HG,Takayama S,Rapp UR,Reed JC. Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1Proc Natl Acad Sci USAYear: 199693706388692945
Chen J,Xiong J,Liu H,Chernenko G,Tang SC. Distinct BAG-1 isoforms have different anti-apoptotic functions in BAG-1-trans fected C33A human cervical carcinoma cell lineOncogeneYear: 2002217050912370827
Xiong J,Chen J,Chernenko G,Beck J,Liu H,Pater A. et alAntisense BAG-1 sensitizes HeLa cells to apoptosis by multiple pathwaysBiochem Biophys Res CommunYear: 200331258591
Tang SC,Beck J,Murphy S,Chernenko G,Robb D,Watson P,et al. BAG-1 expression correlates with Bcl-2, p53, differentiation, estrogen and progesterone receptors in invasive breast carcinomaBreast Cancer Res TreatYear: 2004842031315026618
Cutress RI,Townsend PA,Sharp A,Maison A,Wood L,Lee R,et al. The nuclear BAG-1 isoform, BAG-1L, enhances oestrogen-dependent transcriptionOncogeneYear: 20032249738212902980
Yang X,Chernenko G,Hao Y,Ding Z,Pater MM,Pater A,et al. Human BAG-1/RAP46 protein is generated as four isoforms by alternative translation initiation and overexpressed in cancer cellsOncogeneYear: 19981798199747877
Cato AC,Mink S. BAG-1 family of cochaperones in the modulation of nuclear receptor actionJ Steroid Biochem Mol BiolYear: 2001783798811738548
Bardelli A,Longati P,Albero D,Goruppi S,Schneider C,Ponzetto C,et al. HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell deathEmbo JYear: 1996156205128947043
Clevenger CV,Thickman K,Ngo W,Chang WP,Takayama S,Reed JC. Role of Bag-1 in the survival and proliferation of the cytokine-dependent lymphocyte lines, Ba/F3 and Nb2Mol EndocrinolYear: 199711608189139804
Luders J,Demand J,Papp O,Hohfeld J. Distinct isoforms of the cofactor BAG-1 differentially affect Hsc70 chaperone functionJ Biol ChemYear: 2000275148172310809723
Niyaz Y,Zeiner M,Gehring U. Transcriptional activation by the human Hsp70-associating protein Hap50J Cell SciYear: 2001114(Pt 10): 18394511329370
Zeiner M,Niyaz Y,Gehring U. The hsp70-associating protein Hap46 binds to DNA and stimulates transcriptionProc Natl Acad Sci USAYear: 19999610194910468585
Sondermann H,Scheufler C,Schneider C,Hohfeld J,Hartl FU,Moarefi I. Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factorsScienceYear: 20012911553711222862
Takayama S,Bimston DN,Matsuzawa S,Freeman BC,Aime-Sempe C,Xie Z,et al. BAG-1 modulates the chaperone activity of Hsp70/Hsc70EMBO JYear: 1997164887969305631
Takayama S,Xie Z,Reed JC. An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulatorsJ Biol ChemYear: 199927478169873016
Antoku K,Maser RS,Scully WJ Jr,Delach SM,Johnson DE. Isolation of Bcl-2 binding proteins that exhibit homology with BAG-1 and suppressor of death domains proteinBiochem Biophys Res CommunYear: 200128610031011527400
Froesch BA,Takayama S,Reed JC. BAG-1L protein enhances androgen receptor functionJ Biol ChemYear: 19982731166069565586
Kullmann M,Schneikert J,Moll J,Heck S,Zeiner M,Gehring U,et al. RAP46 is a negative regulator of glucocorticoid receptor action and hormone-induced apoptosisJ Biol ChemYear: 19982731462059603979
Zeiner M,Gebauer M,Gehring U. Mammalian protein RAP46: an interaction partner and modulator of 70 kDa heat shock proteinsEMBO JYear: 1997165483909312007
Takahashi N,Sasaki R,Takahashi J,Takayama S,Reed JC,Andoh T. BAG-1M, an isoform of Bcl-2-interacting protein BAG-1, enhances gene expression driven by CMV promoterBiochem Biophys Res CommunYear: 20012868071411520069
Luders J,Demand J,Hohfeld J. The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasomeJ Biol ChemYear: 20002754613710671488

Article Categories:
  • Original Article

Keywords: BAG-1, breast cancer, estrogen, apoptosis.

Previous Document:  Sulfated tyrosines 27 and 29 in the N-terminus of human CXCR3 participate in binding native IP-10.
Next Document:  Inhibitory effects of tetrandrine on the Na(+) channel of human atrial fibrillation myocardium.