Document Detail

Dietary conjugated linoleic Acid and hepatic steatosis: species-specific effects on liver and adipose lipid metabolism and gene expression.
Jump to Full Text
MedLine Citation:
PMID:  21869929     Owner:  NLM     Status:  In-Data-Review    
Objective. To summarize the recent studies on effect of conjugated linoleic acid (CLA) on hepatic steatosis and hepatic and adipose lipid metabolism highlighting the potential regulatory mechanisms. Methods. Sixty-four published experiments were summarized in which trans-10, cis-12 CLA was fed either alone or in combination with other CLA isomers to mice, rats, hamsters, and humans were compared. Summary and Conclusions. Dietary trans-10, cis-12 CLA induces a severe hepatic steatosis in mice with a more muted response in other species. Regardless of species, when hepatic steatosis was present, a concurrent decrease in body adiposity was observed, suggesting that hepatic lipid accumulation is a result of uptake of mobilized fatty acids (FA) from adipose tissue and the liver's inability to sufficiently increase FA oxidation and export of synthesized triglycerides. The potential role of liver FA composition, insulin secretion and sensitivity, adipokine, and inflammatory responses are discussed as potential mechanisms behind CLA-induced hepatic steatosis.
Diwakar Vyas; Anil Kumar G Kadegowda; Richard A Erdman
Related Documents :
17355139 - Fermentation and lactic acid addition enhance iron bioavailability of maize.
11371199 - Epr investigation of the active site of recombinant human 5-lipoxygenase: inhibition by...
7893739 - Evidence for the importance of iron in the alpha-oxidation of 3-methyl-substituted fatt...
9202099 - Milk inhibits and ascorbic acid favors ferrous bis-glycine chelate bioavailability in h...
1556559 - Excretion of anthranilate and 3-hydroxyanthranilate by saccharomyces cerevisiae: relati...
6540979 - The relative effect of ascorbic acid on iron absorption from soy-based and milk-based i...
4010149 - Origin of positive transepithelial potential difference in early distal segments of rat...
22270809 - Equipotent inhibition of fatty acid amide hydrolase and monoacylglycerol lipase - dual ...
1033039 - Release of rna--dna-protein complex during differentiation of the water mould allomyces...
Publication Detail:
Type:  Journal Article     Date:  2011-08-22
Journal Detail:
Title:  Journal of nutrition and metabolism     Volume:  2012     ISSN:  2090-0732     ISO Abbreviation:  J Nutr Metab     Publication Date:  2012  
Date Detail:
Created Date:  2011-08-26     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101526296     Medline TA:  J Nutr Metab     Country:  United States    
Other Details:
Languages:  eng     Pagination:  932928     Citation Subset:  -    
Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): J Nutr Metab
Journal ID (publisher-id): JNUME
ISSN: 2090-0724
ISSN: 2090-0732
Publisher: Hindawi Publishing Corporation
Article Information
Download PDF
Copyright © 2012 Diwakar Vyas et al.
Received Day: 15 Month: 5 Year: 2011
Accepted Day: 22 Month: 6 Year: 2011
Print publication date: Year: 2012
Electronic publication date: Day: 22 Month: 8 Year: 2011
Volume: 2012E-location ID: 932928
ID: 3160137
PubMed Id: 21869929
DOI: 10.1155/2012/932928

Dietary Conjugated Linoleic Acid and Hepatic Steatosis: Species-Specific Effects on Liver and Adipose Lipid Metabolism and Gene Expression
Diwakar Vyas1*
Anil Kumar G. Kadegowda2
Richard A. Erdman1
1Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
2Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
Correspondence: *Diwakar Vyas:
[other] Academic Editor: Konstantinos Kantartzis

1. Introduction

Obesity is a chronic metabolic nutritional disorder that has increased at an alarming rate in the last 20 years [1]. In the US, 68% of the adults (age ≥ 20 years) and 18% of children (2–19 years) are either obese or overweight as per the National Health and Nutrition Examination Survey [2, 3]. Incidence of obesity is associated with many health complications such as hypertension, hyperlipidemia, cardiovascular disease, type 2 diabetes [4], and a range of lipid abnormalities, the most common being nonalcoholic fatty liver disease (NAFLD) [4].

NAFLD is an important health concern due to its high prevalence (~20% of adult population) and its association with insulin resistance and metabolic syndrome [5]. It is characterized by hepatic lipid accumulation primarily in the form of triglycerides (TG) [6]. Some of the potential steps involved in the progression of NAFLD may involve increased uptake of circulating fatty acids (FA) [7], increased hepatic denovo lipogenesis (DNL) [8], reduced rate of FA oxidation [9], or reduced FA secretion [10, 11]. When NAFLD is associated with inflammation and fibrosis, it is termed as nonalcoholic steatohepatitis (NASH), a serious condition that could lead to liver cirrhosis, hepatic carcinoma, and liver failure [12]. The pathogenesis of NAFLD can be explained by “two hit” hypothesis suggesting steatosis as the “first hit” which increases the vulnerability of liver to various second hits like oxidative stress and inflammation leading to NASH [13].

Although no specific guidelines exist for treatment of NAFLD, recommendations are aimed at reducing body weight due to its strong association with obesity and metabolic syndrome [4]. In this regard, bioactive lipids/FA as functional food may be important in modulating metabolism and body weight. A specific group of polyunsaturated FA collectively known as conjugated linoleic acid (CLA) have been suggested to have an effect on regulating energy metabolism [14] and is being used commercially as a weight-loss supplement. CLA were recently granted “Generally Recognized As Safe”, status in the United States (GRN no. 232; for use as a dietary supplement. However, CLA effects are varied depending on the type of CLA isomer, the animal's physiological condition, and the tissue type examined. In this paper, we summarize the recent studies on effect of CLA on hepatic lipid metabolism highlighting the potential regulatory mechanisms.

2. Conjugated Linoleic Acid

Conjugated linoleic acid refers to a group of dienoic derivatives of linoleic acid with conjugated double bonds arranged in different combinations of cis and trans configuration [15]. Currently, 16 naturally occurring CLA isomers have been identified with different positional (7/9, 8/10, 9/11, 10/12, and 11/13) and geometric (cis/cis, trans/trans, cis/trans, and trans/cis) combinations [16, 17].

Sources of CLA include those naturally present in dairy products and meat from ruminant animals or those contained in industrially hydrogenated vegetable oils and other synthetic products [14]. The CLA originating from the ruminant products predominantly consist of cis-9, trans-11 CLA (>80%), with a small amounts of trans-10, cis-12 CLA and other isomers [18]. The industrially synthesized CLA and other commercial products intended for human consumption typically consists of equal amounts of cis-9, trans-11 CLA and trans-10, cis-12 CLA and other isomers [19]. Of all the CLA isomers, cis-9, trans-11 CLA and trans-10, cis-12 CLA have been the most widely studied due to their biologically active properties [15].

3. Physiological Effects of CLA

A great deal of current interest in CLA is due to their bioactive properties including anticarcinogenic [19], antiatherogenic [20], immunity enhancing [21], and effects on body composition [22]. Each CLA isomer has unique bioactive properties, and hence, the biological effect from a mixture of dietary CLA isomers, as is the case in most of the studies, would be the combined effect of their distinct isomers [15]. For example, cis-9, trans-11 CLA and trans-10, cis-12 CLA have additive effects on cancer [23] and immune cell functions [24] but are antagonistic on insulin sensitivity. While cis-9, trans-11 CLA improves insulin sensitivity, trans-10, cis-12 CLA causes insulin resistance. Also, trans-10, cis-12 CLA is solely responsible for changes in body composition and reducing adipose mass [25].

3.1. Body Weight and Lean Mass

CLA reduces body weight and body fat mass and increases lean mass in different species [22]. However, the response appears to vary depending on species, physiological stage, and fat depot [22, 26]. Table 1 provides a summary of studies reviewed across species with respect to body weight and adiposity, where the number of experiments showing significant (P > 0.05) increases, decreases, or no change and the mean response to dietary trans-10, cis-12 CLA within those categories are reported. The range of trans-10, cis-12 CLA addition in these studies varied between 0.1 and 1 percent of the diet.

Trans-10, cis-12 CLA reduces body fat to a maximum extent in mice (60% to 80%) [27, 28]. However, modest and inconsistent effects are seen in rats [49, 82], hamsters (9% to 58%) [54, 55], and pigs (6% to 25%) [83]. Similarly, variable responsiveness to CLA was observed for epididymal, perirenal, and subcutaneous body fat depots [55]. Inconsistent responses to trans-10, cis-12 CLA have been reported in clinical trials with humans [84]. Some have shown significant effects on body composition [63, 85], while others have not [64, 65]. The differences in the responses are attributed to differences in the dose levels, age, and rate of adipose tissue TG turnover [14, 66, 84]. The response to CLA isomers also depends on the physiological state of the animal which is probably due to differences in the preferential uptake of CLA by different tissues. For example, trans-10, cis-12 CLA is preferentially taken up by the mammary tissue during lactation leading to substantial (~45%) decrease in milk lipid synthesis [29].

3.2. Effects of CLA on Hepatic Lipid Metabolism

Liver plays an important role in energy homeostasis, as it converts excessive dietary glucose into FA which is exported as TG. Liver is an important target for CLA effects irrespective of the physiological condition. Of the different CLA isomers, trans-10, cis-12 CLA causes increased lipid accumulation leading to hepatic steatosis [3032, 86]. However, the intensity of lipid accumulation varies depending on the level of CLA in the diet, duration of feeding, physiological condition, and animal species (Table 1). The factors leading to hepatic lipid accumulation are multifactorial involving increased FA influx, increased FA synthesis, and altered FA oxidation and TG secretion insufficient to prevent lipid accumulation (Figure 1) [33]. These mechanisms are probably not mutually exclusive and could act in a coordinated manner to hasten the development and progression of fatty liver [87].

3.2.1. Hepatic FA Synthesis

Under normal conditions, de novo lipogenesis contributes minimally to the lipid pool in the liver [88]. However, the lipid synthesis increases to as much as 26% during steatotic conditions [89]. The increase in hepatic lipid content due to CLA, specifically trans-10, cis-12 CLA, is commonly associated with increased hepatic lipogenesis [30]. In mice, CLA has been repeatedly shown to increase the expression of sterol regulatory element-binding protein-1c (SREBP-1c), key transcriptional regulator in hepatic lipogenesis and its downstream genes acetyl CoA carboxylase (ACC), fatty acid synthase (FASN), and stearoyl CoA desaturase-1 (SCD1) [30, 34, 35] (Table 2). However, in rats and hamsters, the responses are equivocal. The increase in SREBP-1c expression in mice is attributed to hyperinsulinemia (Figure 1) [30]. The decreased expression of lipogenic (ACC1, ACC2, FASN, and SCD1) genes in the absence of insulin in mice fed trans-10, cis-12 CLA further supports this argument [33]. In addition to SREBP-1c, insulin induces the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) [90], which is in low abundance under normal conditions [91]. PPAR-γ expression is increased in steatotic liver (Figure 1) [30, 92], while its ablation ameliorates the condition in mice [93]. Insulin resistance in response to trans-10, cis-12 CLA could upregulate genes of glucogenic pathway (e.g., PEPCK, G6P) leading to hyperglycemia (Figure 1) [94]. In turn, elevated blood glucose concentrations could upregulate hepatic lipogenesis through carbohydrate response element binding protein (ChREBP), a transcriptional regulator modulated by glucose (Figure 1). The targeted deletion of ChREBP in the liver improves the steatotic conditions in ob/ob mice [94]. However, the role of ChREBP in CLA-induced hepatic steatosis is not known. Although hyperinsulinemia triggers the hepatic lipogenesis, CLA-induced hepatic steatosis in the absence of insulin suggests the involvement of other regulatory mechanisms affecting hepatic lipid accumulation [33].

3.2.2. Hepatic FA Uptake and TG Secretion

In mouse experiments, dietary trans-10, cis-12 CLA was associated with upregulation of genes associated with FA uptake and TG secretion (FAT/CD36; Table 2). During hepatic steatosis about 59% of hepatic TG is derived from free FA released from the adipose tissue and 15% is derived from dietary fat [89]. FA transporters, (FATP5, FAT/CD36, FABP-1, FABP-4, and FABP-5) regulate the FA uptake by hepatocytes. While the overexpression of these proteins promotes steatosis, functional deletion ameliorates the condition [98100]. As CLA are natural ligands and activators of PPAR-γ [101] the upregulation of FAT/CD36 by trans-10, cis-12 CLA [32, 33, 102] could be through PPAR-γ leading to increased hepatic FA uptake. In addition to FAT/CD36, we have observed modest increases in the expression of FABP-1 (1.39 fold) and FABP-2 (1.7 fold) in liver of lactating mice fed trans-10, cis-12 CLA (Kadegowda, A. K. G., Erdman, R. A., and Loor, J. J., unpublished results).

Besides enhanced FA uptake and lipogenesis, alteration in very low-density lipoprotein (VLDL) secretion rates could also result in liver fat accumulation [103]. The VLDL production and secretion is increased in response to elevated lipid concentrations. However, impaired or insufficient fat export via VLDL predisposes animal to hepatic steatosis [10]. Trans-10, cis-12 CLA reduced TG secretion leading to higher lipid accumulation in HepG2 cells due to reduced apolipoprotein B synthesis [104]. Conversely, lipoprotein clearance was not affected in mice fed CLA [31, 102]. The TG export was increased with higher rate of VLDL secretion; however, it was insufficient to eliminate increased FA flux entering the liver leading to hepatic steatosis [31].

3.2.3. Hepatic FA Oxidation

Hepatic FA oxidation encompasses β-oxidation in mitochondria and peroxisomes and ω-oxidation in the microsomes [105]. The FA < C8 to C20 are catabolized through the mitochondrial β-oxidation pathway, while FA > C20 are initially catabolized in the peroxisomes to shorter FA which are then shuttled to mitochondria for further oxidation [32]. Previous studies have reported variable responses in hepatic FA oxidation with trans-10, cis-12 CLA. Most of the studies have shown increased FA oxidation [27, 34, 36, 56, 106], while some have reported reduced [32] or unaltered FA oxidation [22] with CLA.

Carnitine palmitoyltransferase-1 (CPT1) is the rate limiting enzyme for mitochondrial β-oxidation pathway, as it regulates the transport of fatty acyl CoA into mitochondria. When measured in mice, CPT1 gene expression was consistently increased by CLA (Table 2) which might be mediated through transcriptional regulator PPAR-α as it regulates the key enzymes (e.g., CPT1, CPT2, and ACO) involved in hepatic FA oxidation [50].

Despite increased FA oxidation hepatic steatosis was consistently observed in mice (Tables 1 and 2). Since studies showing increased FA oxidation were also associated with increased hepatic lipogenesis, it is possible that that the rates of hepatic lipogenesis far exceed the rates of FA oxidation resulting in increased lipid accumulation. Along with increased lipogenesis the level of malonyl CoA, a product of ACC, was also increased that allosterically inhibits CPT1 enzyme activity [36]. Thus, despite higher expression of FA oxidation genes, it is possible that FA combustion might be depressed in vivo leading to steatosis.

Some studies have shown CLA induced downregulation of genes related to mitochondrial β-oxidation (CPT1), and ω oxidation (cyt P450 and FMO3) [32]. We have also observed decreased expression of CPT1, ACOX1, and FMO3 without any changes in hepatic lipogenic genes of lactating mice fed trans-10, cis-12 CLA (Kadegowda, A. K. G., Erdman, R. A., and Loor, J. J., unpublished results). The variable responses among different studies can be attributed to the level and type of fat used in the experimental diet along with the physiological conditions of animal used in the experiment.

3.2.4. Effect of CLA on Hepatic FA Composition

Trans-10, cis-12 CLA-induced hepatic steatosis is characterized by changes in hepatic FA composition [29, 37, 107111] similar to those induced during NAFLD [112]. The hepatic FA composition in steatotic liver determines the extent of susceptibility of liver injury [113]. The steatotic liver FA profile is characterized by substantial reductions in long chain polyunsaturated FA (LC-PUFA) concentrations; specifically that of arachidonic acid (C20:4n-6). While linoleic (18:2n-6) and α-linolenic acid (18:3n-3) are unaltered, the concentrations of eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3) are decreased. The desaturation and elongation of linoleic and α-linolenic acid by desaturases (Δ5-desaturase, Δ6-desaturase) and elongases (ELOVL-2, ELOVL-3) are involved in synthesis of LC-PUFA. Trans-10, cis-12 CLA inhibits both Δ5- and Δ6-desaturase in HepG2 cells [114]. A recent tracer study with [U-13C] linoleic acid showed significant reduction in n-6 PUFA synthesis by inhibition of elongation and desaturation in the liver homogenates of neonatal pigs [115]. A decrease in arachidonic acid synthesis would alter eicosanoid metabolism and potentially reduce the synthesis of prostaglandin E2 (PGE2) [116] which is known to have protective effects on liver [117].

Typical NAFLD is also characterized by increased n-6 : n-3 LC-PUFA ratio which favors lipid synthesis over lipid oxidation and secretion leading to hepatic lipid accumulation [118]. Trans-10, cis-12 CLA reduces the n-3 PUFA in liver [38, 109] in addition to arachidonic acid. The n-3 PUFA downregulate SREBP-1c and upregulate PPAR-α, which regulates lipid oxidation (CPT1, ACOX1) and secretion (ApoB100). A decrease in hepatic n-3 PUFA would not only reduce lipid oxidation but increase lipogenesis leading to hepatic steatosis [118]. Although the trans-10, cis-12 CLA-induced responses in FA oxidation are variable in mice, consistently increased lipogenesis (Table 2) suggests a potential role for n-3 PUFA. On the contrary, CLA feeding increased n-3 PUFA content and decreased n-6 PUFA in the rats [119, 120] which could probably explain the differences in CLA effects between the two species. Although the exact mechanism of CLA action has not been elucidated, Banni et al. [121] has suggested that the metabolites of CLA, conjugated dienes (CD)18:3, CD20:3, CD20:4, could compete with other PUFA at the level of formation and metabolism in liver and affect LC-PUFA synthesis.

3.3. CLA and SCD in Hepatic Lipid Metabolism

In the adipose, there are some similarities between the effects of trans-10, cis-12 CLA and the inhibition of SCD1. For example, reduced adiposity is observed with both dietary trans-10, cis-12 CLA and SCD1 inhibition and one could speculate that the effects of trans-10, cis-12 CLA are mediated through SCD1 as trans-10, cis-12 CLA decreases SCD1 in adipose [122]. However, a study with SCD1−/− mice showed that the antiobesity effects of trans-10, cis-12 CLA were independent of SCD1 gene expression and enzyme activity [123].

Unlike adipose, the effects of trans-10, cis-12 CLA are varied in liver (Table 2). While trans-10, cis-12 CLA decreased hepatic SCD activity in vitro [124], in vivo studies report increased hepatic SCD1 gene expression [32, 95]. In contrast to trans-10, cis-12 CLA effects in mice, SCD1−/− mice showed increased insulin sensitivity, reduced hepatic lipogenic genes, upregulated lipid oxidizing genes, increased hepatic saturated FA and unchanged hepatic n-3 and n-6 PUFA [125]. SCD1−/− mice fed trans-10, cis-12 CLA showed reduced hepatic accumulation compared to wild type [123] confirming that reduced SCD1 expression decreases hepatic lipid accumulation [126]. Liver specific SCD1 knock out decreased expression of SREBP1 and ChREBP and their target genes there by reducing hepatic lipogenesis [127]. In contrast, short-term inhibition of tissue specific hepatic SCD increased hepatic TG content and enhanced insulin signaling, [128] but the long-term inhibition decreased hepatic steatosis [129]. The differences in responses observed in liver specific knockout versus complete SCD knockout mice suggests that hepatic lipid metabolism is being affected by lipid metabolism in nonhepatic tissues [130].

As trans-10, cis-12 CLA effects in mice are mostly associated with insulin resistance; increased hepatic SCD1 expression is probably due to increased SREBP-1c expression. Hepatic steatosis due to trans-10, cis-12 CLA is also seen in the absence of insulin and is associated with reduced expression of SCD1 and other lipogenic genes [33]. These results indicate that the disturbances in hepatic lipid metabolism caused by dietary trans-10, cis-12 CLA are mediated by multiple mechanisms [131] rather than through changes in SCD1 alone.

3.4. Role of Adipose during CLA-Induced Hepatic Steatosis

The effect of CLA on adipose lipid metabolism is well documented [14]. Of all the CLA isomers, trans-10, cis-12 CLA is the most potent to induce changes in adipose [25]. The changes may be caused by reduced lipid content, size, and number of adipocytes. Trans-10, cis-12 CLA reduces lipogenesis by decreasing expression of SREBP-1c and PPAR-γ and their downstream genes, ACC, FASN, and SCD1, reduces glucose and FA uptake by reducing GLUT4 and LPL expression, increases FA oxidation by increasing CPT1 and UCP2 expression and reduces adipocyte proliferation and differentiation by reducing PPAR-γand its downstream genes [131]. Furthermore, CLA affects various adipocyte secreted-adipokines (e.g., leptin, adiponectin, and resistin) and cytokines (e.g., TNFα and IL6), which are involved in wide range of physiological activities [14]. Trans-10, cis-12 CLA increases the mRNA expression of cytokines, TNFα and IL6 in adipose tissue [131]. However, the circulating cytokine levels are reduced in response to trans-10, cis-12 CLA (Table 2). The increased cytokine expression in adipose tissue is known to reduce the activity of PPAR-γ [132], and thereby affect its downstream cellular functions. Also, TNFα and IL6 inhibit the activation of insulin receptor substrate-1 (IRS-1) through induction of suppressors of cytokine signaling (SOCS3) disrupting insulin action [133]. The expressions of TNFα and adiponectin, an adipokine associated with insulin sensitivity, are inversely related [134]. The adipose tissue depletion would reduce the level of adiponectin and when coupled with increased TNFα would lead to severe insulin resistance. The subsequent pancreatic β cell hyperplasia, as a compensatory mechanism to insulin resistance, leads to hyperinsulinemia which promotes lipid accretion in the liver leading to hepatic steatosis [39].

In mice, trans-10, cis-12 CLA causes severe lipodystrophy reducing the levels of leptin and adiponectin (Table 2), which leads to hepatic steatosis (Table 1, Figure 1). Re-establishing the levels of leptin or adiponectin either through external supplementation (in case of leptin) or induction using rosiglitazone (ROSI) (in case of adiponectin) attenuated hepatic steatotic condition and normalized the insulin levels in CLA-fed mice [135, 136]. Similar results are seen in studies where prevention of lipodystrophy prevented lipid accumulation in the liver [135]. Serum insulin levels are directly correlated with liver TG, while serum adiponectin levels are inversely related [35]. Adipokines could improve the condition of the liver by lowering the insulin levels. However, hepatic steatosis is seen in mice even at low insulin levels [33], suggesting that different mechanisms could regulate the induction of hepatic steatosis depending on the animal's physiological condition. The intensity of hepatic steatosis could be directly related to the relative amounts of adipose tissue. CLA-induced hyperinsulinemia and hepatic steatosis are observed only if there are corresponding decreases in the adipose tissue mass [40, 135]. Stout et al. [137], reported increases in diacylglycerol (DAG) concentration and membrane associated protein kinase C (PKC) during trans-10, cis-12 CLA-induced hepatic steatosis. Increased PKC would affect insulin signaling leading to insulin resistance, hyperinsulinemia, and hyperglycemia [137].

3.5. CLA and Inflammatory Responses

In addition to its effects on lipid metabolism, trans-10, cis-12 CLA also induces an inflammatory response in adipose tissue [131, 138]. Trans-10, cis-12 CLA activates integrated stress response leading to activation of NF-kB pathway, induction of inflammatory cytokines, TNFα, IL6, and IL8 [41, 138, 139], and macrophage infiltration [35]. However, the level of circulating cytokines, TNFα and IL6, were decreased in response to trans-10, cis-12 CLA [42, 43]. In contrast to the adipose, the effects of CLA on hepatic inflammatory responses are not well defined. Trans-10, cis-12 CLA did not affect expression markers of macrophage infiltration in mice liver such as TNFα or F4/80 and CD68 during hepatic steatosis [35]. However, trans-10, cis-12 CLA increased expression of markers of hepatic inflammation in hamsters without inducing hepatic steatosis [57]. The authors in [57] attributed this to an increased capacity of the liver for higher FA oxidation leading to inflammation and oxidant stress defense pathway in the hamsters.

4. Prevention or Amelioration of CLA-Induced Hepatic Steatosis

Several studies have examined either the prevention or amelioration of trans-10, cis-12 CLA-induced hepatic steatosis (Table 3) by normalizing serum adipokine levels, altering hepatic PUFA composition or both. External supplementation of recombinant murine leptin ameliorate CLA-induced hepatic steatosis and hyperinsulinemia by decreasing hepatic lipogenesis and increasing insulin sensitivity respectively [40, 136]. Serum adiponectin levels were not restored (and remained low) even after leptin supplementation, prompting the authors in [136] to claim that leptin alone could ameliorate CLA induced steatosis. Conversely, trans-10, cis-12 CLA-caused hyperinsulinemia associated with lipid steatosis in Ob/Ob mouse which lack functional leptin [143] suggests the involvement of other factors. Increasing adiponectin levels by supplementation of ROSI attenuates liver fat accumulation in Ob/Ob mouse [49]. ROSI prevented lipodystrophy, decreased hepatic lipogenesis and subsequently liver TG content [35]. The insulin sensitizing action of leptin and adiponectin normalizes insulin levels which further helps in preventing CLA-induced steatosis [40, 141].

Dietary FA or oil supplements with higher n-3 and n-6 PUFA are able to ameliorate liver steatosis when supplemented along with CLA. Supplementing arachidonic acid [140] or its precursor γ-linolenic acid (18:3n-6) [44] decreased induction of hepatic steatosis and increased liver PGE2 levels. Hepatic steatosis is characterized by significant reduction in the levels of arachidonic acid in liver. Arachidonic acid supplementation would not only normalize the level of respective FA but would also increase the levels of hepatic PGE2 [44, 140]. Both arachidonic acid and PGE2 would further reduce hepatic lipogenesis by decreasing FASN and S14 gene expression [140, 144] thereby preventing hepatic steatosis.

The importance of n-3 PUFA concentrations on hepatic lipid metabolism was explained in the earlier section. Trans-10, cis-12 CLA decreases liver n-3 PUFA concentrations which affect hepatic lipid metabolism. Dietary supplements enriched in n-3 PUFA along with CLA diet increased the content of n-3 and n-6 PUFA in liver [38]. Fish oil, a source of PUFA has been shown to ameliorate CLA-induced steatosis by increasing leptin and adiponectin levels and decreasing plasma insulin [27]. Pinolenic oil, a source of Pinolenic acid was able to stabilize insulin levels when fed with CLA [141]. Similarly, flaxseed oil, a source of α-linolenic acid was able to increase n-3 and n-6 PUFA in liver. Supplementing EPA and DHA prevents lipid accumulation when fed with trans-10, cis-12 CLA [45, 142]. This effect was independent of their effects on stabilizing insulin sensitivity. Both EPA and DHA have modest effects in restoring plasma leptin levels, while DHA alone can restore plasma adiponectin levels to some extent [142]. The effects of DHA in preventing hepatic steatosis were mediated through decreasing hepatic lipogenesis [45].

5. Role of Cis-9, Trans-11 CLA in Hepatic Metabolism

Of the 16 naturally occurring CLA isomers, trans-10, cis-12 CLA and cis-9, trans-11 CLA have been the most extensively studied with respect to their bioactive properties. Most of the animal studies have used a CLA mixture having trans-10, cis-12 CLA and cis-9, trans-11 CLA in 1 : 1 ratio to study the effect of CLA on liver metabolism. Studies using purified CLA isomer have delineated the differences between the two isomers. While trans-10, cis-12 CLA leads to decreased adipose tissue leading to insulin resistance, hyperinsulinemia, and hepatic steatosis, cis-9, trans-11 CLA shows only modest effects in mice [3032, 86] and hamsters [56, 58]. Similarly, the effects of CLA on SCD1 gene and protein expression are isomer specific [145]. Contrary to trans-10, cis-12 CLA, cis-9, trans-11 CLA has no effect on SCD1 gene expression either in vitro [124] or in vivo [95].

A few studies have reported beneficial effects of cis-9, trans-11 CLA. For example, cis-9, trans-11 CLA did not alter liver lipid content but reduced 18:1n-9 and 18:1n-7 and increased 18:2n-6 in TG in contrast to trans-10, cis-12 CLA [108]. In addition, cis-9, trans-11 CLA promotes insulin sensitivity [42, 43] by reducing adipose inflammation [41, 132]. Furthermore, it enhances hepatic mitochondrial function and protects against oxidative stress by increasing activities of mitochondrial antioxidant enzymes [146]. The anti-inflammatory role of cis-9, trans-11 CLA is related to the induction of anti-inflammatory heat shock protein (HSP) 70 kDa and decreased expression of proinflammatory macrophage migration inhibitory factor [147].

6. Conclusions

Hepatic steatosis induced by trans-10, cis-12 CLA is associated with lipodystrophy in addition to insulin resistance, hyperinsulinemia, and hyperglycemia in mice (Figure 1). These effects are largely attributed to decreased adipokine (leptin and adiponectin) secretion. Dietary interventions preventing lipodystrophy or normalizing leptin and adiponectin levels prevents or ameliorates hepatic steatosis in mice, suggesting that adipose tissue responsiveness to trans-10, cis-12 CLA could be the main contributing factor. The moderate responsiveness of adipose tissue to trans-10, cis-12 CLA observed in hamsters and rats results in lower (or absence of) hepatic TG accumulation when compared with mice (Table 1) explains species specific responses.

Hepatic steatosis, due to increased lipid accumulation, is multifactorial and is largely attributed to increased rates of lipid synthesis along with lipid uptake, and it far exceeds the rates of FA oxidation and VLDL secretion. In addition, trans-10, cis-12 CLA-induced hepatic steatosis is characterized by reduction of n-6 PUFA (especially C20:4n-6) and n-3 PUFA (Figure 1). Changes in hepatic FA composition could play an important role in progression of hepatic steatosis, as normalizing the levels of n-6 PUFA or n-3 PUFA by dietary supplementation prevents or ameliorates hepatic lipid accumulation. Further studies are needed to understand the molecular mechanisms and the interrelationship between trans-10, cis-12 CLA-induced hepatic steatosis and altered hepatic PUFA content. We are still lacking mechanistic details showing relationship between adipokine levels, insulin resistance, and hepatic FA composition in context of hepatic steatosis, and it needs to be addressed in the future experiments.


D. Vyas and A. K. G. Kadegowda contributed equally to this work.

1. Salas-Salvadó J,Márquez-Sandoval F,Bulló M. Conjugated Linoleic acid intake in humans: a systematic review focusing on its effect on body composition, glucose, and lipid metabolismCritical Reviews in Food Science and NutritionYear: 200646647948816864141
2. Flegal KM,Carroll MD,Ogden CL,Curtin LR. Prevalence and trends in obesity among US adults, 1999-2008Journal of the American Medical AssociationYear: 2010303323524120071471
3. Ogden CL,Carroll MD,Curtin LR,Lamb MM,Flegal KM. Prevalence of high body mass index in US children and adolescents, 2007-2008Journal of the American Medical AssociationYear: 2010303324224920071470
4. Zivkovic AM,German JB,Sanyal AJ. Comparative review of diets for the metabolic syndrome: implications for nonalcoholic fatty liver diseaseAmerican Journal of Clinical NutritionYear: 200786228530017684197
5. Fabbrini E,Sullivan S,Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implicationsHepatologyYear: 201051267968920041406
6. McCullough AJ. The clinical features, diagnosis and natural history of nonalcoholic fatty liver diseaseClinics in Liver DiseaseYear: 20048352153315331061
7. Reddy JK,Rao MS. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidationAmerican Journal of PhysiologyYear: 20062905G852G85816603729
8. Diraison F,Moulin PH,Beylot M. Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver diseaseDiabetes and MetabolismYear: 200329547848514631324
9. Ronis MJ,Chen Y,Jo CH,Simpson P,Badger TM. Diets containing soy protein isolate increase hepatic CYP3A expression and inducibility in weanling male rats exposed during early developmentJournal of NutritionYear: 2004134123270327615570024
10. Charlton M,Sreekumar R,Rasmussen D,Lindor K,Nair KS. Apolipoprotein synthesis in nonalcoholic steatohepatitisHepatologyYear: 200235489890411915037
11. Huang HL,Lin WY,Lee LT,Wang HH,Lee WJ,Huang KC. Metabolic syndrome is related to nonalcoholic steatohepatitis in severely obese subjectsObesity SurgeryYear: 200717111457146318219772
12. Li ZZ,Berk M,McIntyre TM,Feldstein AE. Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-Coa desaturaseJournal of Biological ChemistryYear: 200928495637564419119140
13. Day CP,James OFW. Steatohepatitis: a tale of two ‘Hits’GastroenterologyYear: 19981144 I8428459547102
14. Park Y,Pariza MW. Mechanisms of body fat modulation by conjugated linoleic acid (CLA)Food Research InternationalYear: 2007403311323
15. Pariza MW,Park Y,Cook ME. The biologically active isomers of conjugated linoleic acidProgress in Lipid ResearchYear: 200140428329811412893
16. Eulitz K,Yurawecz MP,Sehat N,et al. Preparation, separation, and confirmation of the eight geometrical cis/trans conjugated linoleic acid isomers 8, 10- through 11, 13-18:2LipidsYear: 199934887387710529099
17. Sehat N,Rickert R,Mossoba MM,et al. Improved separation of conjugated fatty acid methyl esters by silver ion-high-performance liquid chromatographyLipidsYear: 199934440741310443974
18. Parodi PW. Conjugated octadecadienoic acids of milk-fatJournal of Dairy ScienceYear: 1977601015501553
19. Chin SF,Liu W,Storkson JM,Ha YL,Pariza MW. Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogensJournal of Food Composition and AnalysisYear: 199253185197
20. Lee KN,Kritchevsky D,Parizaa MW. Conjugated linoleic acid and atherosclerosis in rabbitsAtherosclerosisYear: 1994108119257980704
21. Miller CC,Park Y,Pariza MW,Cook ME. Feeding conjugated linoleic acid to animals partially overcomes catabolic responses due to endotoxin injectionBiochemical and Biophysical Research CommunicationsYear: 19941983110711128117267
22. Park Y,Albright KJ,Liu W,Storkson JM,Cook ME,Pariza MW. Effect of conjugated linoleic acid on body composition in miceLipidsYear: 19973288538589270977
23. Ip C,Dong Y,Ip MM,et al. Conjugated linoleic acid isomers and mammary cancer preventionNutrition and CancerYear: 2002431525812467135
24. Belury MA. Inhibition of carcinogenesis by conjugated linoleic acid: potential mechanisms of actionJournal of NutritionYear: 2002132102995299812368384
25. Park Y,Storkson JM,Albright KJ,Liu W,Pariza MW. Evidence that the trans-10,cis-12 isomer of conjugated linoleic acid induces body composition changes in miceLipidsYear: 199934323524110230716
26. Larsen TM,Toubro S,Astrup A. Efficacy and safety of dietary supplements containing CLA for the treatment of obesity: evidence from animal and human studiesJournal of Lipid ResearchYear: 200344122234224112923219
27. Ide T. Interaction of fish oil and conjugated linoleic acid in affecting hepatic activity of lipogenic enzymes and gene expression in liver and adipose tissueDiabetesYear: 200554241242315677499
28. Andreoli MF,Gonzalez MA,Martinelli MI,Mocchiutti NO,Bernal CA. Effects of dietary conjugated linoleic acid at high-fat levels on triacylglycerol regulation in miceNutritionYear: 200925444545219091510
29. Kadegowda AKG,Connor EE,Teter BB,et al. Dietary trans fatty acid isomers differ in their effects on mammary lipid metabolism as well as lipogenic gene expression in lactating miceJournal of NutritionYear: 2010140591992420220207
30. Clément L,Poirier H,Niot I,et al. Dietary trans-10,cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouseJournal of Lipid ResearchYear: 20024391400140912235171
31. Degrace P,Demizieux L,Gresti J,Chardigny JM,Sébédio JL,Clouet P. Association of liver steatosis with lipid oversecretion and hypotriglyceridaemia in C57BL/6j mice fed trans-10,cis-12-linoleic acidFEBS LettersYear: 20035462-333533912832064
32. Rasooly R,Kelley DS,Greg J,Mackey BE. Dietary trans 10, cis 12-conjugated linoleic acid reduces the expression of fatty acid oxidation and drug detoxification enzymes in mouse liverBritish Journal of NutritionYear: 2007971586617217560
33. Jourdan T,Djaouti L,Demizieux L,Gresti J,Vergès B,Degrace P. Liver carbohydrate and lipid metabolism of insulin-deficient mice is altered by trans-10, cis-12 conjugated linoleic acidJournal of NutritionYear: 2009139101901190719692528
34. Takahashi Y,Kushiro M,Shinohara K,Ide T. Activity and mRNA levels of enzymes involved in hepatic fatty acid synthesis and oxidation in mice fed conjugated linoleic acidBiochimica et Biophysica ActaYear: 20031631326527312668178
35. Liu LF,Purushotham A,Wendel AA,Belury MA. Combined effects of rosiglitazone and conjugated linoleic acid on adiposity, insulin sensitivity, and hepatic steatosis in high-fat-fed miceAmerican Journal of PhysiologyYear: 20072926G1671G168217322064
36. Degrace P,Demizieux L,Gresti J,Chardigny JM,Sébédio JL,Clouet P. Hepatic steatosis is not due to impaired fatty acid oxidation capacities in C57BL/6J mice fed the conjugated trans-10,cis-12-Isomer of Linoleic AcidJournal of NutritionYear: 2004134486186715051838
37. Belury MA,Kempa-Steczko A. Conjugated linoleic acid modulates hepatic lipid composition in miceLipidsYear: 19973221992049075211
38. Kelley DS,Vemuri M,Adkins Y,Gill SHS,Fedor D,Mackey BE. Flaxseed oil prevents trans-10, cis-12-conjugated linoleic acid-induced insulin resistance in miceBritish Journal of NutritionYear: 2009101570170818710604
39. Poirier H,Rouault C,Clément L,et al. Hyperinsulinaemia triggered by dietary conjugated linoleic acid is associated with a decrease in leptin and adiponectin plasma levels and pancreatic beta cell hyperplasia in the mouseDiabetologiaYear: 20054861059106515868135
40. Tsuboyama-Kasaoka N,Takahashi M,Tanemura K,et al. Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in miceDiabetesYear: 20004991534154210969838
41. Poirier H,Shapiro JS,Kim RJ,Lazar MA. Nutritional supplementation with trans-10, cis-12-conjugated linoleic acid induces inflammation of white adipose tissueDiabetesYear: 20065561634164116731825
42. Halade GV,Rahman MM,Fernandes G. Differential effects of conjugated linoleic acid isomers in insulin-resistant female C57Bl/6J miceJournal of Nutritional BiochemistryYear: 201021433233719423318
43. Halade GV,Rahman MM,Fernandes G. Effect of CLA isomers and their mixture on aging C57Bl/6J miceEuropean Journal of NutritionYear: 200948740941819424653
44. Nakanishi T,Oikawa D,Koutoku T,et al. γ-linolenic acid prevents conjugated linoleic acid-induced fatty liver in miceNutritionYear: 200420439039315043857
45. Yanagita T,Wang YM,Nagao K,Ujino Y,Inoue N. Conjugated linoleic acid-induced fatty liver can be attenuated by combination with docosahexaenoic acid in C57BL/6N miceJournal of Agricultural and Food ChemistryYear: 200553249629963316302788
46. Park Y,Albright KJ,Storkson JM,Liu W,Cook ME,Pariza MW. Changes in body composition in mice during feeding and withdrawal of conjugated linoleic acidLipidsYear: 199934324324810230717
47. DeLany JP,West DB. Changes in body composition with conjugated linoleic acidJournal of the American College of NutritionYear: 2000194487S493S10963469
48. Foote MR,Giesy SL,Bernal-Santos G,Bauman DE,Boisclair YR. t10,c12-CLA decreases adiposity in peripubertal mice without dose-related detrimental effects on mammary development, inflammation status, and metabolismAmerican Journal of PhysiologyYear: 20102996R1521R152820844263
49. Purushotham A,Shrode GE,Wendel AA,Liu LF,Belury MA. Conjugated linoleic acid does not reduce body fat but decreases hepatic steatosis in adult Wistar ratsJournal of Nutritional BiochemistryYear: 2007181067668417368879
50. Moya-Camarena SY,Vanden Heuvel JP,Belury MA. Conjugated linoleic acid activates peroxisome proliferator-activated receptor α and β subtypes but does not induce hepatic peroxisome proliferation in Sprague-Dawley ratsBiochimica et Biophysica ActaYear: 1999143633313429989264
51. Choi JS,Jung MH,Park HS,Song J. Effect of conjugated linoleic acid isomers on insulin resistance and mRNA levels of genes regulating energy metabolism in high-fat-fed ratsNutritionYear: 20042011-121008101715561492
52. Tsuzuki T,Igarashi M,Miyazawa T. Conjugated Eicosapentaenoic acid (EPA) inhibits transplanted tumor growth via membrane lipid peroxidation in nude miceJournal of NutritionYear: 200413451162116615113964
53. Andreoli MF,Scalerandi MV,Borel IM,Bernal CA. Effects of CLA at different dietary fat levels on the nutritional status of rats during protein repletionNutritionYear: 20072311-1282783517869484
54. Miranda J,Churruca I,Fernández-Quintela A,et al. Weak effect of trans-10, cis-12-conjugated linoleic acid on body fat accumulation in adult hamstersBritish Journal of NutritionYear: 2009102111583158919619365
55. Zabala A,Churruca I,Fernández-Quintela A,et al. Trans-10,cis-12 conjugated linoleic acid inhibits lipoprotein lipase but increases the activity of lipogenic enzymes in adipose tissue from hamsters fed an atherogenic dietBritish Journal of NutritionYear: 20069561112111916768833
56. Macarulla MT,Fernández-Quintela A,Zabala A,et al. Effects of conjugated linoleic acid on liver composition and fatty acid oxidation are isomer-dependent in hamsterNutritionYear: 200521451251915811773
57. Navarro V,Portillo MP,Margotat A,et al. A multi-gene analysis strategy identifies metabolic pathways targeted by trans-10, cis-12-conjugated linoleic acid in the liver of hamstersBritish Journal of NutritionYear: 2009102453754519216830
58. Bissonauth V,Chouinard Y,Marin J,Leblanc N,Richard D,Jacques H. The effects of t10,c12 CLA isomer compared with c9,t11 CLA isomer on lipid metabolism and body composition in hamstersJournal of Nutritional BiochemistryYear: 200617959760316481156
59. Lasa A,Simón E,Churruca I,et al. Effects of trans-10,cis-12 CLA on liver size and fatty acid oxidation under energy restriction conditions in hamstersNutritionYear: 201127111612120619605
60. Simón E,MacArulla MT,Churruca I,Fernández-Quintela A,Portillo MP. trans-10,cis-12 Conjugated linoleic acid prevents adiposity but not insulin resistance induced by an atherogenic diet in hamstersJournal of Nutritional BiochemistryYear: 200617212613116111872
61. Tarling EJ,Ryan KJP,Bennett AJ,Salter AM. Effect of dietary conjugated linoleic acid isomers on lipid metabolism in hamsters fed high-carbohydrate and high-fat dietsBritish Journal of NutritionYear: 2009101111630163818983716
62. De Deckere EAM,Van Amelsvoort JMM,McNeill GP,Jones P. Effects of conjugated linoleic acid (CLA) isomers on lipid levels and peroxisome proliferation in the hamsterBritish Journal of NutritionYear: 199982430931710655980
63. Thom E,Wadstein J,Gudmundsen O. Conjugated linoleic acid reduces body fat in healthy exercising humansJournal of International Medical ResearchYear: 200129539239611725826
64. Zambell KL,Keim NL,Van Loan MD,et al. Conjugated linoleic acid supplementation in humans: effects on body composition and energy expenditureLipidsYear: 200035777778210941879
65. Petridou A,Mougios V,Sagredos A. Supplementation with CLA: isomer incorporation into serum lipids and effect on body fat of womenLipidsYear: 200338880581114577658
66. Malpuech-Brugère C,Verboeket-Van De Venne WPHG,Mensink RP,et al. Effects of two conjugated linoleic acid isomers on body fat mass in overweight humansObesity ResearchYear: 200412459159815090626
67. Berven G,Bye A,Hals O,et al. Safety of conjugated linoleic acid (CLA) in overweight or obese human volunteersEuropean Journal of Lipid Science and TechnologyYear: 20001027455462
68. Risérus U,Vessby B,Arner P,Zethelius B. Supplementation with trans10cis12-conjugated linoleic acid induces hyperproinsulinaemia in obese men: close association with impaired insulin sensitivityDiabetologiaYear: 20044761016101915168020
69. Riserus U,Arner P,Brismar K,et al. Treatment with dietary trans10cis12 conjugated linoleic add causes isomerm-specific insulin resistance in obese men with the metabolic syndromeDiabetes CareYear: 20022591516152112196420
70. Basu S,Risérus U,Turpeinen A,Vessby B. Conjugated linoleic acid induces lipid peroxidation in men with abdominal obesityClinical ScienceYear: 200099651151611099394
71. Benito P,Nelson GJ,Kelley DS,Bartolini G,Schmidt PC,Simon V. The effect of conjugated linoleic acid on plasma lipoproteins and tissue fatty acid composition in humansLipidsYear: 200136322923611337977
72. Mougios V,Matsakas A,Petridou A,et al. Effect of supplementation with conjugated linoleic acid on human serum lipids and body fatJournal of Nutritional BiochemistryYear: 2001121058559412031264
73. Kreider RB,Ferreira MP,Greenwood M,Wilson M,Almada AL. Effects of conjugated linoleic acid supplementation during resistance training on body composition, bone density, strength, and selected hematological markersJournal of Strength and Conditioning ResearchYear: 200216332533412173945
74. Kamphuis MMJW,Lejeune MPGM,Saris WHM,Westerterp-Plantenga MS. Effect of conjugated linoleic acid supplementation after weight loss on appetite and food intake in overweight subjectsEuropean Journal of Clinical NutritionYear: 200357101268127414506488
75. Moloney F,Yeow TP,Mullen A,Nolan JJ,Roche HM. Conjugated linoleic acid supplementation, insulin sensitivity, and lipoprotein metabolism in patients with type 2 diabetes mellitusAmerican Journal of Clinical NutritionYear: 200480488789515447895
76. Whigham LD,O’Shea M,Mohede ICM,Walaski HP,Atkinson RL. Safety profile of conjugated linoleic acid in a 12-month trial in obese humansFood and Chemical ToxicologyYear: 200442101701170915354322
77. Gaullier JM,Halse J,Høye K,et al. Supplementation with conjugated linoleic acid for 24 months is well tolerated by and reduces body fat mass in healthy, overweight humansJournal of NutritionYear: 2005135477878415795434
78. Gaullier JM,Halse J,Høye K. Conjugated linoleic acid supplementation for 1 y reduces body fat mass in healthy overweight humans (vol 79, pg 1118, 2004)American Journal of Clinical NutritionYear: 2005812p. 538
79. Taylor JSW,Williams SRP,Rhys R,James P,Frenneaux MP. Conjugated linoleic acid impairs endothelial functionArteriosclerosis, Thrombosis, and Vascular BiologyYear: 2006262307312
80. Thrush AB,Chabowski A,Heigenhauser GJ,McBride BW,Or-Rashid M,Dyck DJ. Conjugated linoleic acid increases skeletal muscle ceramide content and decreases insulin sensitivity in overweight, non-diabetic humansApplied Physiology, Nutrition and MetabolismYear: 2007323372382
81. Racine NM,Watras AC,Carrel AL,et al. Effect of conjugated linoleic acid on body fat accretion in overweight or obese childrenAmerican Journal of Clinical NutritionYear: 20109151157116420200257
82. Gudbrandsen OA,Rodríguez E,Wergedahl H,et al. Trans-10, cis-12-conjugated linoleic acid reduces the hepatic triacylglycerol content and the leptin mRNA level in adipose tissue in obese Zucker fa/fa ratsBritish Journal of NutritionYear: 2009102680381519298684
83. Whigham LD,Watras AC,Schoeller DA. Efficacy of conjugated linoleic acid for reducing fat mass: a meta-analysis in humansAmerican Journal of Clinical NutritionYear: 20078551203121117490954
84. Bhattacharya A,Banu J,Rahman M,Causey J,Fernandes G. Biological effects of conjugated linoleic acids in health and diseaseJournal of Nutritional BiochemistryYear: 2006171278981016650752
85. Blankson H,Stakkestad JA,Fagertun H,Thom E,Wadstein J,Gudmundsen O. Conjugated linoleic acid reduces body fat mass in overweight and obese humansJournal of NutritionYear: 2000130122943294811110851
86. Cooper MH,Miller JR,Mitchell PL,Currie DL,McLeod RS. Conjugated linoleic acid isomers have no effect on atherosclerosis and adverse effects on lipoprotein and liver lipid metabolism in apoE-/- mice fed a high-cholesterol dietAtherosclerosisYear: 2008200229430218280484
87. Gentile CL,Pagliassotti MJ. The endoplasmic reticulum as a potential therapeutic target in nonalcoholic fatty liver diseaseCurrent Opinion in Investigational DrugsYear: 20089101084108818821470
88. Diraison F,Beylot M. Role of human liver lipogenesis and reesterification in triglycerides secretion and in FFA reesterificationAmerican Journal of PhysiologyYear: 19982742E321E3279486165
89. Donnelly KL,Smith CI,Schwarzenberg SJ,Jessurun J,Boldt MD,Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver diseaseJournal of Clinical InvestigationYear: 200511551343135115864352
90. Boelsterli UA,Bedoucha M. Toxicological consequences of altered peroxisome proliferator-activated receptor γ (PPARγ) expression in the liver: insights from models of obesity and type 2 diabetesBiochemical PharmacologyYear: 200263111011754868
91. Tontonoz P,Hu E,Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factorCellYear: 1994797114711568001151
92. Zhang YL,Hernandez-Ono A,Siri P,et al. Aberrant hepatic expression of PPARγ2 stimulates hepatic lipogenesis in a mouse model of obesity, insulin resistance, dyslipidemia, and hepatic steatosisJournal of Biological ChemistryYear: 200628149376033761516971390
93. Gavrilova O,Haluzik M,Matsusue K,et al. Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat massJournal of Biological ChemistryYear: 200327836342683427612805374
94. Denechaud PD,Bossard P,Lobaccaro JM,et al. LXR stimulates ChREBP expression but glucose is required its post-traductional activationDiabetesYear: 200756p. A39
95. Guillén N,Navarro MA,Arnal C,et al. Microarray analysis of hepatic gene expression identifies new genes involved in steatotic liverPhysiological GenomicsYear: 200937318719819258494
96. Lin X,Loor JJ,Herbein JH. Trans10,cis12-18:2 is a more potent inhibitor of de novo fatty acid synthesis and desaturation than cis9,trans11-18:2 in the mammary gland of lactating miceJournal of NutritionYear: 200413461362136815173397
97. Stringer DM,Zahradka P,DeClercq VC,et al. Modulation of lipid droplet size and lipid droplet proteins by trans-10,cis-12 conjugated linoleic acid parallels improvements in hepatic steatosis in obese, insulin-resistant ratsBiochimica et Biophysica ActaYear: 20101801121375138520800698
98. Musso G,Gambino R,Pacini G,De Michieli F,Cassader M. Prolonged saturated fat-induced, glucose-dependent insulinotropic polypeptide elevation is associated with adipokine imbalance and liver injury in nonalcoholic steatohepatitis: dysregulated enteroadipocyte axis as a novel feature of fatty liverAmerican Journal of Clinical NutritionYear: 200989255856719141695
99. Doege H,Baillie RA,Ortegon AM,et al. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasisGastroenterologyYear: 200613041245125816618416
100. Zhou SL,Ge FX,Hu CG,et al. Increased insulin- and leptin-regulated hepatocellular fatty acid uptake plays a major role in the pathogenesis of hepatic steatosis in mouse models with intact leptin signaling, but not in those lacking leptin (ob/ob) or the leptin receptor (db/db)HepatologyYear: 2008484p. 1161
101. Belury MA,Moya-Camarena SY,Lu M,Shi L,Leesnitzer LM,Blanchard SG. Conjugated linoleic acid is an activator and ligand for peroxisome proliferator-activated receptor-gamma (PPARγ)Nutrition ResearchYear: 2002227817824
102. Degrace P,Moindrot B,Mohamed I,et al. Upregulation of liver VLDL receptor and FAT/CD36 expression in LDLR −/− apoB100/100 mice fed trans-10,cis-12 conjugated linoleic acidJournal of Lipid ResearchYear: 200647122647265516957181
103. Nagayoshi A,Matsuki N,Saito H,et al. Defect in assembly process of very-low-density lipoprotein in suncus liver: an animal model of fatty liverJournal of BiochemistryYear: 199511747877937592540
104. Lin Y,Schuurbiers E,Van Der Veen S,De Deckere EAM. Conjugated linoleic acid isomers have differential effects on triglyceride secretion in Hep G2 cellsBiochimica et Biophysica ActaYear: 200115331384611514234
105. Reddy JK,Hashimoto T. Peroxisomal β-oxidation and peroxisome proliferator - Activated receptor α: an adaptive metabolic systemAnnual Review of NutritionYear: 200121193230
106. Javadi M,Beynen AC,Hovenier R,et al. Prolonged feeding of mice with conjugated linoleic acid increases hepatic fatty acid synthesis relative to oxidationJournal of Nutritional BiochemistryYear: 2004151168068715590272
107. Chardigny JM,Hasselwander O,Genty M,Kraemer K,Ptock A,Sébédio JL. Effect of conjugated FA on feed intake, body composition, and liver FA in miceLipidsYear: 200338989590214584596
108. Kelley DS,Bartolini GL,Warren JM,Simon VA,Mackey BE,Erickson KL. Contrasting effects of t10,c12- and c9,t11-conjugated linoleic acid isomers on the fatty acid profiles of mouse liver lipidsLipidsYear: 200439213514115134140
109. Kelley DS,Bartolini GL,Newman JW,Vemuri M,Mackey BE. Fatty acid composition of liver, adipose tissue, spleen, and heart of mice fed diets containing t10, c12-, and c9, t11-conjugated linoleic acidProstaglandins Leukotrienes and Essential Fatty AcidsYear: 2006745331338
110. Martins SV,Lopes PA,Alves SP,et al. Dietary conjugated linoleic acid isomers change the unsaturation degree of hepatic fatty acids in neutral lipids but not in polar lipidsNutrition ResearchYear: 201131324625421481719
111. Sébédio JL,Angioni E,Chardigny JM,Grégoire S,Juanéda P,Berdeaux O. The effect of conjugated linoleic acid isomers on fatty acid profiles of liver and adipose tissues and their conversion to isomers of 16:2 and 18:3 conjugated fatty acids in ratsLipidsYear: 200136657558211485160
112. Puri P,Baillie RA,Wiest MM,et al. A lipidomic analysis of nonalcoholic fatty liver diseaseHepatologyYear: 20074641081109017654743
113. Wang D,Wei Y,Pagliassotti MJ. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosisEndocrinologyYear: 2006147294395116269465
114. Eder K,Slomma N,Becker K. Trans-10,cis-12 conjugated linoleic acid suppresses the desaturation of linoleic and α-linolenic acids in HepG2 cellsJournal of NutritionYear: 200213261115112112042419
115. Lin X,Bo J,Oliver SAM,et al. Dietary conjugated linoleic acid alters long chain polyunsaturated fatty acid metabolism in brain and liver of neonatal pigs The Journal of Nutritional Biochemistry. In press.
116. Sugano M,Tsujita A,Yamasaki M,Noguchi M,Yamada K. Conjugated linoleic acid modulates tissue levels of chemical mediators and immunoglobulins in ratsLipidsYear: 19983355215279625600
117. Lukivskaya OY,Maskevich AA,Buko VU. Effect of ursodeoxycholic acid on prostaglandin metabolism and microsomal membranes in alcoholic fatty liverAlcoholYear: 20012529910511747979
118. El-Badry AM,Graf R,Clavien PA. Omega 3 - Omega 6: what is right for the liver?Journal of HepatologyYear: 200747571872517869370
119. Li Y,Watkins BA. Conjugated linoleic acids alter bone fatty acid composition and reduce ex vivo prostaglandin E2 biosynthesis in rats fed n-6 or n-3 fatty acidsLipidsYear: 19983344174259590630
120. Eder K,Slomma N,Becker K,Brandsch C. Effect of linseed oil supplementation on concentrations of (n-3) polyunsaturated fatty acids in liver phospholipids of rats fed diets containing either an oil rich in conjugated linoleic acids, sunflower oil or high-oleic acid sunflower oilJournal of Animal Physiology and Animal NutritionYear: 2005891-2455419112715
121. Banni S,Petroni A,Blasevich M,et al. Conjugated linoleic acids (CLA) as precursors of a distinct family of PUFALipidsYear: 200439111143114615726830
122. Brown JM,McIntosh MK. Conjugated linoleic acid in humans: regulation of adiposity and insulin sensitivityJournal of NutritionYear: 2003133103041304614519781
123. Kang K,Miyazaki M,Ntambi JM,Pariza MW. Evidence that the anti-obesity effect of conjugated linoleic acid is independent of effects on stearoyl-CoA desaturase1 expression and enzyme activityBiochemical and Biophysical Research CommunicationsYear: 2004315353253714975733
124. Park Y,Storkson JM,Ntambi JM,Cook ME,Sih CJ,Pariza MW. Inhibition of hepatic stearoyl-CoA desaturase activity by trans-10,cis- 12 conjugated linoleic acid and its derivativesBiochimica et Biophysica ActaYear: 200014862-328529210903479
125. Ntambi JM,Miyazaki M,Stoehr JP,et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposityProceedings of the National Academy of Sciences of the United States of AmericaYear: 20029917114821148612177411
126. MacDonald MLE,Singaraja RR,Bissada N,et al. Absence of stearoyl-CoA desaturase-1 ameliorates features of the metabolic syndrome in LDLR-deficient miceJournal of Lipid ResearchYear: 200849121722917960025
127. Miyazaki M,Flowers MT,Sampath H,et al. Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosisCell MetabolismYear: 20076648449618054317
128. Gutiérrez-Juárez R,Pocai A,Mulas C,et al. Critical role of stearoyl-CoA desaturase - 1 (SCD1) in the onset of diet-induced hepatic insulin resistanceJournal of Clinical InvestigationYear: 200611661686169516741579
129. Jiang G,Li Z,Liu F,et al. Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase-1Journal of Clinical InvestigationYear: 200511541030103815761499
130. Flowers MT,Ntambi JM. Role of stearoyl-coenzyme A desaturase in regulating lipid metabolismCurrent Opinion in LipidologyYear: 200819324825618460915
131. House RL,Cassady JP,Eisen EJ,et al. Functional genomic characterization of delipidation elicited by trans-10, cis-12-conjugated linoleic acid (t10c12-CLA) in a polygenic obese line of micePhysiological GenomicsYear: 20052135136115888570
132. Reynolds CM,Roche HM. Conjugated linoleic acid and inflammatory cell signallingProstaglandins Leukotrienes and Essential Fatty AcidsYear: 2010824–6199204
133. Senn JJ,Klover PJ,Nowak IA,et al. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytesJournal of Biological ChemistryYear: 200327816137401374612560330
134. Kern PA,Di Gregorio GB,Lu T,Rassouli N,Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-α expressionDiabetesYear: 20035271779178512829646
135. Tsuboyama-Kasaoka N,Miyazaki H,Kasaoka S,Ezaki O. Increasing the amount of fat in a conjugated linoleic acid-supplemented diet reduces lipodystrophy in miceJournal of NutritionYear: 200313361793179912771319
136. Nagao K,Inoue N,Ujino Y,et al. Effect of leptin infusion on insulin sensitivity and lipid metabolism in diet-induced lipodystrophy model miceLipids in Health and DiseaseYear: 20087, article 8
137. Stout M,Li L,Belury M. Hepatic steatosis by dietary-conjugated linoleic acid is accompanied by accumulation of diacylglycerol and increased membrane-associated protein kinase C ε in miceMolecular Nutrition and Food ResearchYear: 20115571010101721480517
138. LaRosa PC,Riethoven JJM,Chen H,et al. Trans-10, cis-12 conjugated linoleic acid activates the integrated stress response pathway in adipocytesPhysiological GenomicsYear: 200731354455317878318
139. Poirier H,Niot I,Clément L,Guerre-Millo M,Besnard P. Development of conjugated linoleic acid (CLA)-mediated lipoatrophic syndrome in the mouseBiochimieYear: 2005871737915733740
140. Oikawa D,Tsuyama S,Akimoto Y,Mizobe Y,Furuse M. Arachidonic acid prevents fatty liver induced by conjugated linoleic acid in miceBritish Journal of NutritionYear: 2009101101558156318947440
141. Ferramosca A,Savy V,Conte L,Zara V. Dietary combination of conjugated linoleic acid (CLA) and pine nut oil prevents CLA-induced fatty liver in miceJournal of Agricultural and Food ChemistryYear: 200856178148815818702470
142. Vemuri M,Kelley DS,Bartolini G. Decosahexaenoic acid (DHA) but not eicosapentaenoic acid (EPA) reverses trans-10, cis-12-conjugated linoleic acid (t10, c12-CLA) induced insulin resistance in miceFaseb JournalYear: 2007215p. A113
143. Roche HM,Noone E,Sewter C,et al. Isomer-dependent metabolic effects of conjugated linoleic acid: insights from molecular markers sterol regulatory element-binding protein-1c and LXRαDiabetesYear: 20025172037204412086931
144. Mater MK,Thelen AP,Jump DB. Arachidonic acid and PGE2 regulation of hepatic lipogenic gene expressionJournal of Lipid ResearchYear: 19994061045105210357836
145. Choi Y,Kim YC,Han YB,Park Y,Pariza MW,Ntambi JM. The trans-10,cis-12 isomer of conjugated linoleic acid downregulates stearoyl-CoA desaturase 1 gene expression in 3T3-L1 AdipocytesJournal of NutritionYear: 200013081920192410917902
146. Choi JS,Koh IU,Jung MH,Song J. Effects of three different conjugated linoleic acid preparations on insulin signalling, fat oxidation and mitochondrial function in rats fed a high-fat dietBritish Journal of NutritionYear: 200798226427517408517
147. De Roos B,Rucklidge G,Reid M,et al. Divergent mechanisms of cis9, trans11-and trans10, cis12-conjugated linoleic acid affecting insulin resistance and inflammation in apolipoprotein E knockout mice: a proteomics approachFASEB JournalYear: 200519121746174816055499

Article Categories:
  • Review Article

Previous Document:  Adipokines as possible new predictors of cardiovascular diseases: a case control study.
Next Document:  Cognitive and affective correlates of temperament in Parkinson's disease.