Document Detail

Dielectrophoretic cell trapping and parallel one-to-one fusion based on field constriction created by a micro-orifice array.
MedLine Citation:
PMID:  20697592     Owner:  NLM     Status:  In-Data-Review    
Micro-orifice based cell fusion assures high-yield fusion without compromising the cell viability. This paper examines feasibility of a dielectrophoresis (DEP) assisted cell trapping method for parallel fusion with a micro-orifice array. The goal is to create viable fusants for studying postfusion cell behavior. We fabricated a microfluidic chip that contained a chamber and partition. The partition divided the chamber into two compartments and it had a number of embedded micro-orifices. The voltage applied to the electrodes located at each compartment generated an electric field distribution concentrating in micro-orifices. Cells introduced into each compartment moved toward the micro-orifice array by manipulation of hydrostatic pressure. DEP assisted trapping was used to keep the cells in micro-orifice and to establish cell to cell contact through orifice. By applying a pulse, cell fusion was initiated to form a neck between cells. The neck passing through the orifice resulted in immobilization of the fused cell pair at micro-orifice. After washing away the unfused cells, the chip was loaded to a microscope with stage top incubator for time lapse imaging of the selected fusants. The viable fusants were successfully generated by fusion of mouse fibroblast cells (L929). Time lapse observation of the fusants showed that fused cell pairs escaping from micro-orifice became one tetraploid cell. The generated tetraploid cells divided into three daughter cells. The fusants generated with a smaller micro-orifice (diameter approximately 2 mum) were kept immobilized at micro-orifice until cell division phase. After observation of two synchronized cell divisions, the fusant divided into four daughter cells. We conclude that the presented method of cell pairing and fusion is suitable for high-yield generation of viable fusants and furthermore, subsequent study of postfusion phenomena.
Murat Gel; Yuji Kimura; Osamu Kurosawa; Hidehiro Oana; Hidetoshi Kotera; Masao Washizu
Publication Detail:
Type:  Journal Article     Date:  2010-06-29
Journal Detail:
Title:  Biomicrofluidics     Volume:  4     ISSN:  1932-1058     ISO Abbreviation:  Biomicrofluidics     Publication Date:  2010  
Date Detail:
Created Date:  2010-08-10     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101293825     Medline TA:  Biomicrofluidics     Country:  United States    
Other Details:
Languages:  eng     Pagination:  -     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Separation by dielectrophoresis of dormant and nondormant bacterial cells of Mycobacterium smegmatis...
Next Document:  A miniaturized continuous dielectrophoretic cell sorter and its applications.