Document Detail

Dexmedetomidine does not produce vasocontraction on human isolated gastroepiploic artery.
Jump to Full Text
MedLine Citation:
PMID:  21738846     Owner:  NLM     Status:  PubMed-not-MEDLINE    
BACKGROUND: Recently, the addition of dexmedetomidine to sedation regimens after cardiac surgery had been reported and there is a possibility that dexmedetomidine can cause vasoconstriction. Vasopressin has been used as a prophylactic treatment for refractory vasodilatory shock during coronary artery bypass graft (CABG). Also, vasopressin may play an important role in initiating spasms at the graft artery. Here we evaluate the direct effect of dexmedetomidine on isolated human gastroepiploic arteries and the synergistic effect of dexmedetomidine and vasopressin.
METHODS: Discarded gastroepiploic arteries from elective subtotal gastrectomy (n = 10) were used in this study. We measured the level of contraction in isolated human gastroepiploic arteries induced by increasing concentrations of dexmedetomidine (10(-10) to 10(-6) M) with or without vasopressin (10(-10), 10(-9) M). Arterial contractions caused by increasing concentrations of vasopressin (10(-10) to 10(-7.5) M) with or without dexmedetomidine (10(-9), 10(-7) M) were also measured in the tissue samples.
RESULTS: Supraclinical concentrations of dexmedetomidine elicited contractions at concentrations of 10(-7) M and 10(-6) M (P < 0.05 versus resting tension). The same concentrations of dexmedetomidine (10(-7), 10(-6) M) significantly enhanced vasopressin-induced contractions (P < 0.05 versus vasopressin-induced contraction). Vasopressin produced concentration-dependent contractions and vasopressin (10(-10), 10(-9.5), 10(-9) M) also increased the intensity of dexmedetomidine (10(-7) M) induced contractions.
CONCLUSIONS: There was a synergistic effect between supraclinical doses of dexmedetomidine and vasopressin on the degree of contraction in isolated human gastroepiploic arteries. However, a sedative dose of dexmedetomidine (clinical dose: 0.2-0.7 µg/kg/hr, plasma concentration: 0.36-1.25 ng/ml) did not enhance vasopressin induced-contraction in isolated human gastroepiploic arteries.
Won-Sung Kim; Seung-Hoon Baek; Sang Kwon Lee; Tae Yong Jeon; Hee-Young Kim; Sang Wook Shin
Related Documents :
14766676 - Stretch-induced regional mechanoelectric dispersion and arrhythmia in the right ventric...
2381526 - Internal borderzone infarction following acute middle cerebral artery occlusion.
704846 - The use of the bristle brush for transcatheter embolization.
18845106 - Occlusive arterial disease after radiotherapy for testicular cancer: case report and re...
19385476 - Branch retinal vein occlusion.
14726046 - Duplex ultrasonography predicts safety of radial artery harvest in the presence of an a...
Publication Detail:
Type:  Journal Article     Date:  2011-06-17
Journal Detail:
Title:  Korean journal of anesthesiology     Volume:  60     ISSN:  2005-7563     ISO Abbreviation:  Korean J Anesthesiol     Publication Date:  2011 Jun 
Date Detail:
Created Date:  2011-07-08     Completed Date:  2011-07-14     Revised Date:  2013-05-29    
Medline Journal Info:
Nlm Unique ID:  101502451     Medline TA:  Korean J Anesthesiol     Country:  Korea (South)    
Other Details:
Languages:  eng     Pagination:  428-33     Citation Subset:  -    
Department of Anesthesia and Pain Medicine, Pusan National University School of Medicine, Yangsan, Korea.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Korean J Anesthesiol
Journal ID (publisher-id): KJAE
ISSN: 2005-6419
ISSN: 2005-7563
Publisher: The Korean Society of Anesthesiologists
Article Information
Download PDF
Copyright © the Korean Society of Anesthesiologists, 2011
Received Day: 14 Month: 10 Year: 2010
Revision Received Day: 13 Month: 12 Year: 2010
Accepted Day: 15 Month: 12 Year: 2010
Print publication date: Month: 6 Year: 2011
Electronic publication date: Day: 17 Month: 6 Year: 2011
Volume: 60 Issue: 6
First Page: 428 Last Page: 433
ID: 3121090
PubMed Id: 21738846
DOI: 10.4097/kjae.2011.60.6.428

Dexmedetomidine does not produce vasocontraction on human isolated gastroepiploic artery
Won-Sung Kim12
Seung-Hoon Baek12
Sang Kwon Lee23
Tae Yong Jeon24
Hee-Young Kim12
Sang Wook Shin12
1Department of Anesthesia and Pain Medicine, Pusan National University School of Medicine, Yangsan, Korea.
2Medical Research Institute, Pusan National University Hospital, Yangsan, Korea.
3Department of Thoracic and Cardiovascular Surgery, Pusan National University School of Medicine, Yangsan, Korea.
4Department of General Surgery, Pusan National University School of Medicine, Yangsan, Korea.
Correspondence: Corresponding author: Seung-Hoon Baek, M.D., Ph.D., Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Beomeo-ri, Mulgeum-eup, Yangsan 626-770, Korea. Tel: 82-55-360-1019, Fax: 82-55-360-2149,


Persistent hypotension associated with low systemic vascular resistance and high cardiac output has been termed "vasoplegic syndrome" [1]. Treatment for vasoplegic syndrome involves inotropic support and the administration of high doses of vasopressors. Recent studies have reported that intravenous administration of vasopressin was beneficial in patients with persistent hypotension associated with sepsis or from cardiac surgeries involving cardiopulmonary bypass (CPB) [2-4]. Vasopressin is important in the maintenance of vascular tone after CPB, as a deficiency in vasopressin contributes to vasoplegic syndrome. Both high dose (0.1 to 1 IU/min) and low dose (0.03 IU/min) vasopressin are effective in the treatment of vasoplegic syndrome after cardiac surgeries involving CPB [3,4]. However, vasopressin can be a strong vasoconstrictor in the internal thoracic and radial arteries [5], and these vessels are often used for coronary artery bypass grafting (CABG) [6].

The use of dexmedetomidine (DMT) is associated with a reduction in the dosage of anesthetics and analgesic drugs used during the perioperative period, and it is also used in clinical practice for sedation in the ICU after cardiac operations. Activation of presynaptic α2-adrenoceptors on sympathetic nerves can lead to sympatholysis in the central nervous system. However, activation of vascular postsynaptic receptors causes both vasoconstriction (through activation of the α2-adrenoceptors on the vascular smooth muscle cells) and vasodilatation (through the activation of α2-adrenoceptors on the endothelial cells). Recently, it has been reported that systemically administered DMT caused vasoconstriction with doses lower than the clinically recommended dose [7].

Since vasopressin is one of the principal vasoconstrictors for human vessels and the mechanisms of its vasoconstrictive effect are likely different than the mechanisms for DMT-induced vasoconstriction, there is a possibility of a synergic effect with vasopressin and DMT in human arteries. Despite extensive use of both drugs to induce vasoconstriction, there is scant information available in their postoperative management for CABG. In this study, we hypothesized that DMT can enhance vasopressin-induced contraction in human gastroepiploic arteries (GEA). Moreover, we evaluated the effect of vasopressin on DMT-induced contraction in human GEA.

Materials and Methods

This study was approved by the Institutional Review Board of the University Hospital. After informed consent was obtained, discarded GEAs were obtained from patients who underwent subtotal gastrectomy (n = 10, 43-74 yr). GEA segments were collected and immediately delivered to the laboratory. The tissues were then placed in an oxygenated physiologic salt solution (PSS) that was maintained at 4℃. Fat and connective tissues were carefully removed, and vascular rings (2-3 mm length) were prepared. The rings were then suspended on wires in organ baths filled with PSS. Four segments in separate organ baths with PSS were run in parallel. The PSS had the following composition (mM/L): Na+, 137.4; HCO3-, 15.5; K+, 5.9; Ca2+, 2.6; H2PO4-, 1.2; Mg2+,1.2; Cl-, 134.4; and glucose, 11.5. All solutions were continuously aerated with a mixture of 95% oxygen and 5% carbon dioxide, the pH was adjusted to 7.3-7.4 and the temperature was kept at 37℃.

Two stainless steel hooks were introduced through the lumen of the vascular ring. One hook was anchored to the bottom of the organ bath, and the other was connected to a strain gauge to measure the level of isometric force. The vascular rings were stretched gradually to a resting tension of 2 g during a 90-120 min equilibration period to obtain optimal tension. After the equilibration period, 60 mM of KCl was added to the baths and the contractile force was recorded. For each vessel segment, the greatest contraction elicited by KCl was used as a reference point for the remaining contractions and test contractions were expressed as a percentage of the reference contraction. The vascular rings were then washed (at least 2 times) with PSS to restore the basal contraction levels (i.e. vascular rings had a second equilibration period).

The following drugs were used: DMT (Orion Pharma, Turku, Finland) and arginine vasopressin (Sigma-Aldrich Korea, Youngin, Kyunggi, Korea).

Experiment 1

To establish a dose-response curve, increasing doses of DMT (10-10, 10-9, 10-8, 10-7 and 10-6 M) were added in a cumulative fashion to the organ baths at 3 min intervals to allow the vascular rings to respond to each concentration, and the contractile force was subsequently assessed after each addition.

Then, vasopressin (10-10 or 10-9 M) was also added to the organ baths. After 5 min, DMT was added cumulatively in increasing doses (10-10, 10-9, 10-8, 10-7 and 10-6 M) to the organ baths at 3 min intervals and the contractile force was assessed as above.

Experiment 2

To establish a dose response for vasopressin (10-10, 10-9.5, 10-9, 10-8.5, 10-8, and 10-7.5 M), it was added cumulatively to the organ baths at 3 min intervals and the contractile response was assessed after each addition.

Next, DMT (10-9 or 10-7 M) was added to the organ baths. After 5 min, increasing concentrations of vasopressin were then added cumulatively (10-10, 10-9.5, 10-9, 10-8.5, 10-8, and 10-7.5 M) to the organ baths at 3 min intervals, and the contraction force was assessed after each addition.

Contractile responses were expressed as percentages of the maximum contraction in isotonic 60 mM KCl. When similar experiments were performed on more than one segment from the same patient, a mean for each patient was calculated before statistical analysis.

Results were expressed as the mean ± SD. The data were analyzed by analysis of variance (ANOVA), followed by a Scheffe post-hoc test to detect individual differences and by an unpaired t test to compare two independent groups. Differences were considered significant when P < 0.05.


When DMT (10-10, 10-9, 10-8, 10-7 and 10-6 M) was added cumulatively to the organ bath, the drug induced significant contractions at the higher concentrations (10-7 M: 5.6 ± 4.2%, 10-6 M: 9.3 ± 5.7% of the maximal contraction produced by 60 mM of KCl; P < 0.05 versus resting tension, Fig. 1). High concentrations of DMT significantly enhanced contractions induced by 10-10 M of vasopressin (10-7 M: 19.3 ± 4.9%, 10-6 M: 27.6 ± 5.8% of the maximum contraction produced by 60 mM of KCl; P < 0.05 versus 10-10 M vasopressin-induced contraction, Fig. 2).

High concentrations of DMT similarly enhanced the contractions induced by 10-9 M of vasopressin (10-7 M: 80.2 ± 9.7%, 10-6 M: 86.6 ± 11.2% of the maximum contraction produced by 60 mM of KCl; P < 0.05 versus 10-9 M vasopressin-induced contraction, Fig. 3). When vasopressin (10-10 to 10-7.5 M) was added cumulatively to the vessel segments in the organ bath, the drug induced concentration-dependent contractions (Fig. 4).

Vasopressin did not significantly enhance contractions elicited by 10-9 M concentrations of DMT (Fig. 5). However, lower concentrations of vasopressin (10-10, 10-9.5, and 10-9 M) did significantly enhance contractions induced by 10-7 M DMT (10-10 M: 19.4 ± 3.8%, 10-9.5 M: 23.4 ± 4.3%, 10-9 M: 88.9 ± 14.1% of the maximum contraction produced by 60 mM of KCl; P < 0.05 versus 10-7 M DMT-induced contraction, Fig. 6).


In the present study, we explored the effects of DMT on vasopressin-induced contractions on human GEA. In our study, DMT alone caused significant vasoconstriction at the higher concentrations (10-7 and 10-6 M). When high levels of DMT were added to vessels already exposed vasopressin, there was a significant enhancement of vasopressin-induced contractions, indicating a a synergistic effect between high levels of DMT and vasopressin on vasoconstriction in human GEA.

DMT is the most selective α2-adrenoceptor agonist available for clinical use. Rapid injection of DMT can cause vasoconstriction and result in transient hypertension through the activation of α2-adrenoceptors on vascular smooth muscle cells [8,9]. The stimulation of α1-adrenoceptors by higher concentrations of DMT may also contribute to vasoconstriction [10,11]. This suggests that, when there is no sympathetic inhibition from the central nervous system (in other words, when there is no effects of α2-adrenoceptor agonists in the central nervous system), the peripheral vascular effect (i.e. vasoconstriction) is unmasked. Talke et al. [7] reported that systemic administration of DMT led to peripheral vasoconstriction with minimal contribution from the sympatholytic effects of the drug. Yildiz et al. [12] suggested that DMT induced concentration-dependent contractions in isolated human internal mammary arteries by activating α2-adrenoceptors at lower concentrations and α1-adrenoceptors at higher concentrations. However, only large doses of DMT (10-7 and 10-6 M) in vitro produced significant contractions alone in human GEA in our experiment. Our results suggest that clinical doses (< 10-7 M, 0.2-0.7 µg/kg/hr) of DMT could not induce smooth muscle contraction in human GEA and these findings are contrary to previously published reports [12].

When DMT was added to vessels with vasopressin already present, there was a significant enhancement of vasopressin-induced contraction, but only with high doses of DMT (10-7 and 10-6 M). Previous reports have suggested that α2-adenoreceptor-induced contractions are dependent on Ca2+ influx through the L-type voltage-dependent calcium channels [13]. In our experiment, DMT may have directly affected the vascular smooth muscles at higher concentrations (> 10-7 M) and this is similar to previously reported results. Nielsen et al. suggested that compared to responses mediated by stimulation of postjunctional α1-adrenoceptors, stimulation of postjunctional α2-adrenoceptors relies heavily on calcium influx. Stimulation of postjunctional α2-adrenoceptors is, however, also coupled to intracellular release of calcium in isolated human subcutaneous resistance arteries.

When vasopressin (10-10 to 10-7.5 M) was added cumulatively to the vessel segments in the organ bath, it produced concentration-dependent contractions. DMT at 10-7 M further enhanced vasopressin-induced contractions with either physiologic or clinical doses of vasopressin (10-10, 10-9.5, 10-9 M). However, 10-9 M of DMT did not enhance vasopressin-induced contractions even at supraclinical concentrations of vasopressin (> 10-9 M). Henderson and Byron [14] reported that vasopressin-induced contraction has two concentration-dependent signaling pathways. Protein kinase C activation and Ca2+ entry through the voltage-dependent L-type calcium channels are required for picomolar vasopressin-induced contractions. Moreover, nanomolar concentrations of vasopressin can acutely activate the phospholipase C and inositol 1,4,5-triphosphate-dependent Ca2+ release pathways. In our study, vasopressin-induced contractions at picomolar levels was enhanced by adding 10-7 M of DMT. Thus, this indicated that DMT only directly affected the vascular smooth muscles at higher concentrations (> 10-7 M) and that it produced a marked enhancement of the vasopressin-induced contractions through voltage-dependent L-type calcium channels. The vasoconstrictive activity of vasopressin also requires the Ca2+ signaling pathway. The mechanism of vasopressin is related to the stimulation of V1-receptors on vascular smooth muscle cells and increased intracellular Ca2+ leads to arteriolar vasoconstriction. The degree of vasoconstriction is dependent on the diameter and location of the artery. Vasopressin-induced contraction at nanomolar doses involved a different signaling pathway and the contraction effect was more potent than the effect seen with 10-7 M of DMT.

Our study has several limitations. First, several reports have already shown the inhibitory effect of DMT on phenylephrine-induced contraction in GEA and in internal mammary arteries. This effect was related to the presynaptic α2-antagonist effect of DMT or the activation of α2-adrenoreceptors on endothelial cells, both of which can trigger the release of endothelium-derived nitric oxide. In our study, we used isolated human GEA and they were denervated, i.e. without a presynaptic α2-antagonist effect of DMT. The presynaptic α2-antagonist effect of DMT is important. Therefore, it is hard to directly apply our results to the clinical setting. Second, although all arterial grafts develop vasospasms, it occurs more frequently in GEA [15] and this led us to select isolated GEA for our experiments. However, there is a possibility that the results may be different in other vessels. Generally, vasospasm of the graft artery is related to the endothelial function of the graft artery. The nitric oxide and the endothelium-derived hyperpolarizing factor released from the endothelium of the graft artery may inhibit the contraction of the graft arteries. In this study with GEA, vasopressin-induced contractions overcame the effect of endothelium-derived relaxing factor. Finally, one should be careful to extrapolate the results from this study to clinical applications. There may be many factors that can cause graft vessel spasm in the clinic. These include patient and technical variables during the operation as well as the hormonal environment. Moreover, in our experiments, there was no influence from the central nervous system, as only the α2-adrenoceptor effect were present in vascular smooth muscle cells.

In conclusion, though DMT did enhance vasopressin-induced contraction, it did not directly lead to contraction of isolated human GEA at clinical doses (0.2-0.7 µg/kg/hr). At supraclinical doses (> 10-7 M ), DMT significantly affected the vascular smooth muscle tone and enhanced vasopressin-induced contraction. However, one should be cautious to use DMT for sedation of patients who underwent CABG and to use vasopressin in patients because our study was performed with denervated GEA in isolated preparations.


This work was supported by Pusan National University Research Grant, 2010.

1. Gomes WJ,Carvalho AC,Palma JH,Teles CA,Branco JN,Silas MG,et al. Vasoplegic syndrome after open heart surgeryJ Cardiovasc Surg (Torino)Year: 199839619623
2. Dünser MW,Mayr AJ,Ulmer H,Ritsch N,Knotzer H,Pajk W,et al. The effects of vasopressin on systemic hemodynamics in catecholamine-resistant septic and postcardiotomy shock: a retrospective analysisAnesth AnalgYear: 20019371311429329
3. Masetti P,Murphy SF,Kouchoukos NT. Vasopressin therapy for vasoplegic syndrome following cardiopulmonary bypassJ Card SurgYear: 20021748548912643457
4. Morales DL,Garrido MJ,Madigan JD,Helman DN,Faber J,Williams MR,et al. A double-blind randomized trial: prophylactic vasopressin reduces hypotension after cardiopulmonary bypassAnn Thorac SurgYear: 20037592693012645718
5. Wei W,Floten HS,He GW. Interaction between vasodilators and vasopressin in internal mammary artery and clinical significanceAnn Thorac SurgYear: 20027351652211845867
6. Wei W,Yang CQ,Furnary A,He GW. Greater vasopressin-induced vasoconstriction and inferior effects of nitrovasodilators and milrinone in the radial artery than in the internal thoracic arteryJ Thorac Cardiovasc SurgYear: 2005129334015632822
7. Talke P,Lobo E,Brown R. Systemically administered alpha2-agonist-induced peripheral vasoconstriction in humansAnesthesiologyYear: 200399657012826844
8. Ebert TJ,Hall JE,Barney JA,Uhrich TD,Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humansAnesthesiologyYear: 20009338239410910487
9. Link RE,Desai K,Hein L,Stevens ME,Chruscinski A,Bernstein D,et al. Cardiovascular regulation in mice lacking alpha2-adrenergic receptor subtypes b and cScienceYear: 19962738038058670422
10. Hamasaki J,Tsuneyoshi I,Katai R,Hidaka T,Boyle WA,Kanmura Y. Dual alpha(2)-adrenergic agonist and alpha(1)-adrenergic antagonist actions of dexmedetomidine on human isolated endothelium-denuded gastroepiploic arteriesAnesth AnalgYear: 2002941434144012032002
11. Coughlan MG,Lee JG,Bosnjak ZJ,Schmeling WT,Kampine JP,Warltier DC. Direct coronary and cerebral vascular responses to dexmedetomidine. Significance of endogenous nitric oxide synthesisAnesthesiologyYear: 19927799810061359812
12. Yildiz O,Ulusoy HB,Seyrek M,Gul H,Yildirim V. Dexmedetomidine produces dual alpha2-adrenergic agonist and alpha1-adrenergic antagonist actions on human isolated internal mammary arteryJ Cardiothorac Vasc AnesthYear: 20072169670017905276
13. Nielsen H,Mortensen FV,Pilegaard HK,Hasenkam JM,Mulvany MJ. Calcium utilization coupled to stimulation of postjunctional alpha-1 and alpha-2 adrenoceptors in isolated human resistance arteriesJ Pharmacol Exp TherYear: 19922606376431346639
14. Henderson KK,Byron KL. Vasopressin-induced vasoconstriction: two concentration-dependent signaling pathwaysJ Appl PhysiolYear: 20071021402140917204577
15. He GW,Yang CQ. Comparison among arterial grafts and coronary artery. An attempt at functional classificationJ Thorac Cardiovasc SurgYear: 19951097077157715218

Article Categories:
  • Experimental Research Article

Keywords: Coronary artery bypass surgery, Dexmedetomidine, Gastroepiploic artery, Vasopressin.

Previous Document:  Effects of 10% lidocaine spray on arterial pressure increase due to suspension laryngoscopy and coug...
Next Document:  Difficult tracheostomy tube placement in an obese patient with a short neck -A case report-.