Document Detail

Development of Class IIa Bacteriocins as Therapeutic Agents.
Jump to Full Text
MedLine Citation:
PMID:  22187559     Owner:  NLM     Status:  In-Data-Review    
Class IIa bacteriocins have been primarily explored as natural food preservatives, but there is much interest in exploring the application of these peptides as therapeutic antimicrobial agents. Bacteriocins of this class possess antimicrobial activity against several important human pathogens. Therefore, the therapeutic development of these bacteriocins will be reviewed. Biological and chemical modifications to both stabilize and increase the potency of bacteriocins are discussed, as well as the optimization of their production and purification. The suitability of bacteriocins as pharmaceuticals is explored through determinations of cytotoxicity, effects on the natural microbiota, and in vivo efficacy in mouse models. Recent results suggest that class IIa bacteriocins show promise as a class of therapeutic agents.
Christopher T Lohans; John C Vederas
Related Documents :
3928139 - Clinical and biochemical effects of aflatoxin in feed ration of chicks.
11131899 - Occurrence of fumonisins and moniliformin in corn and corn-based food products of u.s. ...
11403149 - Current importance of ochratoxin a-producing aspergillus spp.
17886189 - Potential for detection and discrimination between mycotoxigenic and non-toxigenic spoi...
17061539 - Regulatory considerations of aflatoxin contamination of food in mexico.
17613059 - Effects of irradiation on fungi and fumonisin b(1) in corn, and of microwave-popping on...
3135879 - Abnormal perception of food size in anorexia nervosa.
19324749 - Fine-tuned modulation of competitive behaviour according to kinship in barn swallow nes...
463809 - A two-reservoir energy model of the human body.
Publication Detail:
Type:  Journal Article     Date:  2011-11-30
Journal Detail:
Title:  International journal of microbiology     Volume:  2012     ISSN:  1687-9198     ISO Abbreviation:  Int J Microbiol     Publication Date:  2012  
Date Detail:
Created Date:  2011-12-21     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101516125     Medline TA:  Int J Microbiol     Country:  Egypt    
Other Details:
Languages:  eng     Pagination:  386410     Citation Subset:  -    
Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Int J Microbiol
Journal ID (publisher-id): IJMB
ISSN: 1687-918X
ISSN: 1687-9198
Publisher: Hindawi Publishing Corporation
Article Information
Download PDF
Copyright © 2012 C. T. Lohans and J. C. Vederas.
Received Day: 17 Month: 8 Year: 2011
Accepted Day: 8 Month: 10 Year: 2011
Print publication date: Year: 2012
Electronic publication date: Day: 30 Month: 11 Year: 2011
Volume: 2012E-location ID: 386410
ID: 3236453
PubMed Id: 22187559
DOI: 10.1155/2012/386410

Development of Class IIa Bacteriocins as Therapeutic Agents
Christopher T. Lohans
John C. Vederas*
Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
Correspondence: *John C. Vederas:
[other] Academic Editor: John Tagg

1. Introduction

Bacteriocins are natural peptides secreted by many varieties of bacteria for the purpose of killing other bacteria. This provides them with a competitive advantage in their environment, eliminating competitors to gain resources. These peptides are ribosomally synthesized, although some are extensively posttranslationally modified.

The classification system for bacteriocins has been subject to ongoing revision [13]. However, bacteriocins from Gram-positive bacteria are generally classified according to size, structure, and modifications. Class I bacteriocins are the lantibiotics, which are highly posttranslationally modified peptides containing lanthionine and methyllanthionine residues. Class II consists of small peptides that do not contain modified residues. Cotter et al. suggested to divide class II bacteriocins into several subclasses: class IIa (pediocin-like bacteriocins), class IIb (two-peptide bacteriocins), and class IIc (circular bacteriocins) [3]. However, others have suggested to consider circular bacteriocins as a separate class [4]. Nonbacteriocin lytic proteins, termed bacteriolysins (also referred to as class III bacteriocins), are large and heat-labile proteins with a distinct mechanism of action from other Gram-positive bacteriocins [3].

Class IIa bacteriocins are generally from 37 to 48 amino acids long, and are characterized by several features. Although they do not have broad spectrum antimicrobial activity compared to other antibiotics, they are particularly potent inhibitors of Listeria species, showing activity at low nanomolar concentrations [5]. They are heat-stable, and not posttranslationally modified beyond the proteolytic removal of a leader peptide and the formation of a conserved N-terminal disulfide bridge (although some members contain an additional C-terminal disulfide bridge). The N-terminal region contains a characteristic YGNGV amino acid sequence, although variants with the alternate YGNGL sequence have been classified in class IIa [6]. A representative class IIa bacteriocin is shown in Figure 1. There have been a number of thorough reviews describing aspects of the genetics, biosynthesis, immunity, structure, mode of action, and the application of class IIa bacteriocins to foods [713].

Briefly, class IIa bacteriocins kill susceptible bacteria by forming pores in their membranes, resulting in the loss of the proton-motive force and depletion of ATP [14]. It is thought that these cationic bacteriocins are drawn to bacterial cells through an initial electrostatic interaction [15]. Then, the amphiphilic C-terminal α-helix inserts into the membrane, wherein the bacteriocin induces the formation of hydrophilic pores. This mechanism of action is reliant on a mannose phosphotransferase (MPT) protein complex found in the membranes of susceptible organisms, but the exact nature of this interaction is not yet clear [1618]. This is covered in more detail by Drider et al. [12] and Nissen-Meyer et al. [19].

Structurally, the N-termini of class IIa bacteriocins tend to exhibit a three-strand antiparallel beta-sheet structure rigidified by a disulfide bridge. The C-terminal region shows an amphiphilic helix terminating in a hairpin structure. In aqueous conditions, class IIa bacteriocins are randomly structured. However, membrane-mimicking conditions such as dodecylphosphocholine micelles or trifluoroethanol induce structure formation [20]. This is not unexpected as their mode of action involves membrane permeabilization [14]. The NMR solution structures of class IIa bacteriocins leucocin A (shown in Figure 2) [20], carnobacteriocin B2 [21] and its precursor precarnobacteriocin B2 [22], sakacin P [23], and curvacin P [24] have been solved to date.

Much of the research on class IIa bacteriocins has focused on their application for food preservation. While they may be well-suited for this purpose, there is a growing body of research exploring the prospect of using these bacteriocins as in vivo therapeutic agents. Bacteriocins are a promising substitute for conventional antibiotics for several reasons. The restricted target specificity of some bacteriocins minimizes their impact on commensal microbiota and may decrease the threat of opportunistic pathogens. Furthermore, most bacteriocins are active at low concentrations, and their degradation products are easily metabolized by the body. With the development of resistance to many important antibiotics, another tool for fighting bacteria is invaluable.

Class IIa bacteriocins are active against several important human pathogens. Perhaps most promising is their activity against the foodborne pathogen Listeria monocytogenes, the deadliest bacterial source of food poisoning [25]. Up to 30% of foodborne infections by L. monocytogenes in high-risk individuals are fatal. Other bacterial foodborne pathogens inhibited by some class IIa bacteriocins include Bacillus cereus, Clostridium botulinum, and C. perfringens [5].

Beyond foodborne pathogens, class IIa bacteriocins are also active against other human pathogens, such as vancomycin-resistant enterococci [26] and the opportunistic pathogen Staphylococcus aureus [5]. Although bacteria sensitive to class IIa bacteriocins are almost exclusively Gram-positive, the Gram-negative opportunistic pathogen Aeromonas hydrophila is also inhibited [27]. Bacteriocins from this class also show other potentially therapeutic properties as antineoplastic [28, 29] and antiviral [30] agents.

The potential of other groups of bacteriocins such as lantibiotics, colicins, and microcins as oral and gastrointestinal antibiotics has been reviewed by Kirkup [31]. Focusing on bacteriocins from Gram-positive bacteria, there have been successes with the administration of either lantibiotic-producing bacteria [26] or purified lantibiotics [3238] for the treatment of infections by several different pathogens. However, less is known about the in vivo use of class IIa bacteriocins.

One method for the therapeutic use of bacteriocins is to introduce bacteriocinogenic bacteria to the gastrointestinal tract as probiotics, which has yielded positive results. Frequently, the mechanisms by which probiotic bacteria benefit the host are not well characterized, but convincing evidence has been put forth by Corr et al. for the production of class IIb bacteriocin Abp118 in vivo [39]. Generally, the introduction of bacteriocinogenic bacteria prior to infection with a pathogen has been more effective [26, 39] than the concomitant introduction of both species [40]. This suggests that probiotic strains may be valuable for prophylactic purposes, but less suited for treating preexisting infections.

Indeed, introduction of a bacteriocin either concomitantly with the infectious agent or postchallenge has proven effective [3238]. A variety of administration methods have been used successfully: subcutaneous, intravenous, intranasal, intragastric, intraperitoneal, and topical [41]. The efficacy of the different methods has not been directly compared and likely depends on the pathogen targeted. Furthermore, some of these methods may be unnecessarily invasive for use in humans, with oral administration being preferred. Although the possibility exists of using crude bacteriocin extract instead of purified bacteriocin, the introduction of complex mixtures into a human may be hazardous and less reproducible. Instead, this paper will focus on the administration of purified class IIa bacteriocin.

Compared to other classes of Gram-positive bacteriocins, the engineering of improved class IIa bacteriocins is somewhat simplified due to their unmodified nature. Creating analogues, by biological or chemical means, does not require implementation of the thioether bridges found in lantibiotics or the cyclization required for circular bacteriocins. Nor does the recombinant expression of class IIa bacteriocins require the biosynthetic machinery, such as dehydratases and cyclases, required for some other bacteriocins. This also allows for the production of class IIa bacteriocins as fusion proteins, a means of increasing production levels and simplifying purifications.

This paper will explore different aspects of the development of class IIa bacteriocins as therapeutic agents for in vivo utilization. The first section discusses attempts to design bacteriocins and bacteriocin analogues with increased stability and potency. Next, methods for improving production and purification of large amounts of bacteriocin from fermentation and recombinant expression will be explored. Finally, the suitability of class IIa bacteriocins for therapeutic use, based on studies testing cytotoxicity, stability, the development of resistance, and the in vivo potential of class IIa bacteriocins will be examined.

2. Engineering Class IIa Bacteriocins for Increased Stability and Potency

The structure-function relationship of class IIa bacteriocins has been well studied, and its implications for their mode of action has been well reviewed [8, 12, 19]. This paper focuses on structure-function as it contributes to the development of improved therapeutics. Specifically, engineering bacteriocins to increase their stability, potency, and spectrum of activity, such that they are more suitable for in vivo utilization and other applications will be discussed.

The introduction of an additional disulfide bridge likely has the effect of rigidifying a specific conformation and could result in improved bacteriocin activity. There is a subgroup of class IIa bacteriocins, including pediocin PA-1, that contain an additional disulfide bridge near the C-terminus. The effect of introducing a C-terminal disulfide bridge into sakacin P, a bacteriocin containing only the conserved N-terminal disulfide bridge, was examined [42]. This modification broadened its spectrum of antimicrobial activity in addition to decreasing the detrimental effect of increased temperature on potency. The C-terminus has been otherwise associated with the target specificity of class IIa bacteriocins [43]. Notably, this sakacin P mutant was found to retain much of its activity at 37°C compared to the natural peptide, and thus is more effective at human physiological temperature [42].

The necessity of the N-terminal disulfide bridge for activity in class IIa bacteriocins has also been explored. Removal of this disulfide bridge could render bacteriocins more stable in reductive environments. Substitution of cysteines 9 and 14 of leucocin A [44] and mesentericin Y105 [45] with serines resulted in a complete loss of activity. However, replacement with hydrophobic residues such as allylglycine, norvaline, and phenylalanine resulted in retention of activity in leucocin A [46]. Furthermore, the replacement of the disulfide bridge with a carbocycle also yielded a biologically active peptide, although the activity was decreased by an order of magnitude [44]. However, the substitution of cysteines 9 and 14 of pediocin PA-1 with allylglycine and phenylalanine residues resulted in no observable activity [46]. This work has been discussed further in a mini-review by Sit and Vederas [47].

Class IIa bacteriocins may also be stabilized by simple amino acid substitutions. Methionine-31 of pediocin PA-1 was found to oxidize over time with an accompanying loss of activity [48]. Mutation of this residue to leucine, isoleucine or alanine resulted in only minor decreases in potency while stabilizing the mutant [48]. Similarly, a 4- to 8-fold decrease in activity was reported for carnobacteriocin BM1 due to an oxidized methionine residue [49], but replacement with a valine residue yielded a mutant with comparable activity [50]. However, in some cases substitution of only a single amino acid residue in class IIa bacteriocins results in dramatically decreased activity relative to their wild-type counterparts [51].

Consideration of the mode of action of class IIa bacteriocins may permit the rational design of mutants with increased potency. Enhancing the net positive charge of a bacteriocin may be expected to promote the initial electrostatic interaction with the membrane of the target and thus result in an increase in activity. Support for this was found in the 44 K (with an additional lysine introduced to the C-terminus) and T20K mutants of sakacin P, which show increased cell binding and potency relative to the wild-type peptide [52].

Approaches to stabilizing other classes of bacteriocins may have potential for use with class IIa bacteriocins. Due to their composition, proteolytic cleavage of bacteriocins in the gastrointestinal tract represents a major hurdle for any attempts to control gastrointestinal infections. Careful alteration of trypsin recognition sites in class IIb bacteriocin salivaricin P had only minor effects on activity [53]. Chemically synthesized peptides with incorporated D-amino acids may be similarly expected to render the peptide less susceptible to proteolytic cleavage. Analogues of class IIb bacteriocin lactococcin G were synthesized with the N- and C-terminal residues replaced with D-amino acids, which decreased their susceptibility to exopeptidases without much effect on activity [54]. However, the extent of incorporation of D-amino acids has limitations. The enantiomer of leucocin A was synthesized containing exclusively D-amino acids, but it was found to be largely inactive [55]. This may be rationalized based on a chiral interaction between class IIa bacteriocins with the MPT complex [16]. Nonetheless, these methods may be valuable for stabilizing class IIa bacteriocins.

Much work is focused on using biological means to create bacteriocin analogues. Mutagenesis of bacteriocins can be readily achieved, and large quantities of a desired mutant are readily available through recombinant expression. However, the biological production of analogues suffers the restriction of the proteogenic amino acid library. As a contrast, chemical peptide synthesis offers a vast array of possibilities for the introduction of nonproteogenic amino acids. Furthermore, unnatural structural features not found in class IIa bacteriocins such as carbocyclic rings and D-amino acids are feasible. However, chemical peptide synthesis is not trivial, and it is relatively time consuming and costly. For a chemically synthesized bacteriocin to be considered a viable therapeutic agent, it would have to be greatly superior to any biologically producible bacteriocins.

The rational substitution of amino acids in class IIa bacteriocins is one method of creating mutants, and this has provided much information about the structure-function relationship of these bacteriocins. However, for the most part, the mutants have had decreased activity relative to the wild-type bacteriocin. Another common approach uses error-prone PCR to randomly generate mutants in the hope of finding interesting or improved activity. However, approaches such as DNA shuffling [51] of related bacteriocins and NNK scanning [56] have been used to randomly generate vast numbers of mutants, greatly increasing the number of variants produced without requiring a proportionate amount of labour.

NNK scanning allows for the systematic examination of the role of each residue in a peptide. The native codons are replaced one by one with the NNK triplet oligonucleotide, replacing the amino acid coded for by that codon with any of the 20 proteogenic amino acids. This allows for testing a much larger number of variants without requiring the time consuming preparation of each mutant separately. Consequently, the possibility of discovering a mutant with increased potency is greater. NNK scanning has been applied to pediocin PA-1 to examine the importance of each residue for bactericidal activity and was indeed successful in creating some mutants with increased activity [56].

Often, changing one amino acid at a time is not sufficient to create improved variants. It has been suggested that bacteriocins have evolved to be as effective as possible, and so the creation of improved bacteriocins requires greater modification [51]. This is possible using an alternate approach that allows for the swapping of multiamino acid sequences between different class IIa bacteriocins to create a hybrid bacteriocin. This approach has been used to create a DNA-shuffling library in which regions of pediocin PA-1 have been shuffled with 10 other class IIa bacteriocins [51]. Some of the hybrids did indeed show increased activity relative to the wild-type bacteriocins from which they were derived [51].

Another approach explored for creating new analogues is to mix the N-terminus of one bacteriocin with the C-terminus of another, thereby creating a chimera. Some chimeras of pediocin PA-1 with other class IIa bacteriocins showed either comparable or greater bactericidal activities to the corresponding natural bacteriocins against certain indicator strains [43, 51].

These approaches to randomly generate vast numbers of mutants and hybrids may allow for simplified drug development, facilitating the discovery of novel potent bacteriocins. Furthermore, these approaches enable the development of new bacteriocins tailored towards different strains of pathogenic bacteria.

3. Methods for Improving Production of Class IIa Bacteriocins

For any potential therapeutic use of class IIa bacteriocins, an inexpensive method for the production of large quantities must be available. One possibility is to purify class IIa bacteriocins from their natural producer strain, taking advantage of the cationic and hydrophobic characters of these peptides. However, these purifications typically yield only small amounts of purified peptide, often consisting of less than a milligram per liter of culture [49, 57]. However, the outlook is not bleak, as optimizing culture conditions and improving the design of purifications maximizes bacteriocin recovery and permits increased scale.

Of the class IIa bacteriocins, pediocin PA-1 is most well characterized in terms of optimization of fermentation. Even then, reported yields must be interpreted carefully, as the sensitivity of indicator strains varies and activity tests are performed differently. A variety of different cultivation methods have been used, such as shake-flasks, batch cultures, and fed-batch cultures. Batch cultures in reactors generally allow for greater control over conditions than shake-flask cultures, with precise control of stirring, aeration, and pH. Fed-batch cultures are similar to batch cultures, except a growth-limiting nutrient is added over time, allowing for higher cell densities.

For the large-scale production of class IIa bacteriocins to be feasible, several conditions must be met. The yield of the fermentation must be satisfactory, otherwise production costs will be high. The growth media must also be inexpensive, although this must be balanced with the bacteriocin yield as the use of more expensive media has been related to improved bacterial growth and bacteriocin production [58].

The highest reported volumetric productivity was accomplished by a repeated-cycle batch culture of Pediococcus acidilactici UL5 immobilized in κ-carrageenan/locust bean gum gel beads, reaching levels of 133 mg of pediocin PA-1 produced per liter per hour in complex de Man Rogosa and Sharpe (MRS) media [58]. Using less expensive supplemented whey permeate (SWP) media under otherwise identical conditions, 50 mg of pediocin PA-1 was produced per liter per hour. The production of bacteriocins has tended to be much superior in immobilized cell cultures compared to free cell cultures [59], as exemplified by the greater than tenfold increase in production of pediocin PA-1 under immobilized conditions [58]. Naghmouchi et al. have published an informative literature summary of recent work on fermentation yields of pediocin PA-1 [58].

Bacteriocin-producing fermentations have been tested in a large variety of media as an attempt to minimize production costs. Waste from the food industry especially has been investigated as an inexpensive alternative to complex growth media. Examples of this include mussel-processing waste [60, 61], whey permeate [58, 6264], trout and squid viscera, and swordfish muscle [65]. Complex growth media tend to be composed of a mixture of nutrients tailored to certain types of bacteria to meet their specific nutritional requirements, while industrial effluents are not so optimized [63, 66].

Although the production of large amounts of bacteriocin is feasible, the purification of these peptides is another matter. A review by Carolissen-Mackay et al. discusses previous purification approaches for bacteriocins [57]. Many purification protocols provide poor yields of bacteriocin with recoveries of under 20% [57]. These poor yields are likely due to unoptimized protocols requiring a large number of steps. More recently, several general protocols have been published specifically for the purpose of purifying class IIa bacteriocins [6769]. For the industrial-scale production of bacteriocins required for therapeutic use, an efficient, inexpensive, and scalable purification scheme with high recovery is needed.

Commonly, the purification of class IIa bacteriocins requires precipitation and centrifugation steps. The latter represents a major bottleneck when attempts are made to increase the scale of production. Furthermore, ammonium sulfate precipitations are frequently a source of loss of material, yielding only 40% ± 20% for a reported pediocin PA-1 purification [67]. Using an initial ion-exchange chromatographic step to concentrate the bacteriocin directly from the culture media is a possible solution [67].

More recent general purification schemes generally follow a similar sequence, taking advantage of the cationic and hydrophobic character of class IIa bacteriocins. First, the culture supernatant is passed through a cation-exchange column [6769] although loading the whole bacterial culture to avoid centrifugation has been reported [67]. Following this step, the eluate is further purified using hydrophobic interaction chromatography, yielding greater than 90% pure bacteriocin in only two steps [67, 69]. HPLC may also be used to further clean up the sample at this stage [68]. These purifications allow for the acquisition of purified bacteriocin in only a few hours [67], with bacteriocin recovery rates reported ranging from 60% [68] to greater than 80% [67].

The development of antibodies capable of recognizing bacteriocins has allowed for an alternate approach to purification, namely, immunoaffinity chromatography [7073]. Indeed, this approach has been used to purify divercin V41, piscicocin V1b, enterocin P, and pediocin PA-1 from culture supernatant in a single step. Although reported yields are sparse, the recovery of enterocin P was 44% [71], while 53% of pediocin PA-1 was retained [73]. Although pure bacteriocin is obtained after a single step, superior yields have been reported for lengthier procedures [67], and the immunoaffinity purification requires costly noncommercial antibody-conjugated resins.

Another notable purification approach uses triton X-114 phase partitioning, which has been applied to the purification of divercin V41 [74]. This approach does not require removal of bacterial cells from the culture, thereby enabling collection of the bacteriocin normally lost adhered to the cell pellet. After the two phases partition, the detergent rich phase is removed, diluted, and loaded on to an ion-exchange column. Purified bacteriocin is simply eluted from the column, with a recovery of greater than 55% [74].

All of these reported purifications have unique advantages and drawbacks. However, the focus has shifted to the large-scale production of bacteriocins instead of purifying only enough for characterization. These approaches have focused on attaining improved yields in fewer steps with mostly scalable steps.

3.1. Heterologous Expression

As an alternative to purification from the natural producer, the recombinant expression of bacteriocins offers a promising means for producing the large amounts of material required for any potential therapeutic use. There have been many reports of the heterologous expression of class IIa bacteriocins in many different hosts, although the focus has been on Gram-positive lactic acid bacteria phylogenetically similar to the producer strain. Gram-negative bacteria such as Escherichia coli and yeast expression platforms such as Saccharomyces cerevisiae have also been used as expression hosts.

The subject of the heterologous expression of mature bacteriocins in lactic acid bacteria has been summarized in an excellent review by Rodríguez et al. [89], which also discusses heterologous bacteriocin production in E. coli and other bacterial strains. Although some of these expression systems allow for the secretion of active bacteriocin into the culture supernatant, the quantity of bacteriocin obtained from these cultures tends to be lower than from the natural producer strain. As such, this is not yet suitable for the large-scale production of bacteriocins required for any potential therapeutic use. However, these heterologous producers may be suitable for food preservation as many lactic acid bacteria are generally recognized as safe. Furthermore, these organisms are capable of simultaneously producing multiple different bacteriocins allowing for a greater spectrum of activity in addition to the possibility of overcoming the development of resistance [9092]. However, the use of genetically modified organisms in food products is still a contentious issue.

The heterologous expression of bacteriocins as fusion proteins in E. coli has been successfully used for the production of larger amounts of bacteriocin than obtained using other approaches. In particular, the commercial strain E. coli Origami (DE3) has been used extensively in this area. Mutations in the genes encoding the glutathione and thioredoxin reductases of this strain allow for the facile formation of the conserved disulfide bridge in the host cytosol.

Additionally, the heterologous expression of class IIa bacteriocins in E. coli as fusion proteins offers many advantages. A summary of the reported use of fusion proteins partnered with class IIa bacteriocins is presented in Table 1. Fusions with affinity labels, such as hexahistidine tags, allow for simplified purification protocols. Additionally, some fusion partners help solubilize the bacteriocin and prevent the desired peptide from forming inclusion bodies, allowing for increased bacteriocin production. The presence of a fusion partner also decreases the antimicrobial activity, avoiding possible toxic effects on the host cell [9395], although there are exceptions [96]. Thioredoxin in particular is useful as a fusion partner. Beyond circumventing the formation of inclusion bodies, a thermostable thioredoxin fusion allows for a thermal coagulation purification step [97]. This has been used to remove high molecular weight contaminants during the purification of carnobacteriocins BM1 and B2 [50]. Furthermore, thioredoxin may even assist in the formation of the conserved N-terminal disulfide bridge [97].

Expression of a bacteriocin solely with a hexahistidine tag has been reported for pediocin PA-1 [104]. However, this recombinant pediocin PA-1 was found to be toxic to the E. coli producer. The purification was complicated by the requirement for denaturing conditions to allow for immobilized-metal affinity chromatography, although the His-tagged peptide was antimicrobially active. Furthermore, expression of small-sized recombinant peptides in E. coli is complicated due to the presence of proteases [105]. The expression of bacteriocins with a larger fusion partner is likely to be advantageous.

The conditions used for fermentations have a significant impact on the amount of fusion protein produced. The final yield of purified bacteriocin is influenced by the purification protocol as well as the method used for fusion protein cleavage. Simple shake-flask cultures have been reported most, although many of the reported yields are admittedly not optimized. Piscicolin 126 was cleaved from a thioredoxin fusion yielding 26 mg per liter [99], while a divercin RV41-thioredoxin fusion yielded between 18 and 23 mg of purified peptide per liter of culture [96, 106].

High-cell density E. coli cultures have also been explored as a means to further increase the production of bacteriocin fusion proteins [50, 106]. The level of production of a recombinant divercin V41-thioredoxin fusion in batch and fed-batch cultivation has been compared to shake-flask cultures [106]. Compared to the yield of 18 ± 1 mg obtained per liter in shake flask cultures, batch and fed-batch yielded 30 ± 2 and 74 ± 5 mg per liter, respectively. However, the highest yields reported are for carnobacteriocins BM1 and B2. These bacteriocins were expressed as thioredoxin fusions in a fed-batch fermentation induced with lactose. The final yields reported are around 320 mg of carnobacteriocin BM1 and carnobacteriocin B2 per liter of the culture, fourfold greater than previous reports [50].

A disadvantage of using bacteriocin fusion proteins is the necessary cleavage and further purification required to get pure bacteriocin. Enzymatic cleavage methods are the most common approach, while chemical methods have also been used. Enzymatic approaches offer the advantage of more specific recognition sites and are thus more compatible with most bacteriocin sequences—although the enzyme recognition is not always infallible [22].

Cyanogen bromide (CNBr) is a common chemical means of cleaving fusion proteins, selectively cleaving on the C-terminal side of methionine residues. However, methionine is found in many class IIa bacteriocins. This has been circumvented with carnobacteriocin BM1, wherein methionine-41 was substituted with a valine residue with some impact on activity [50]. However, CNBr has significant advantages over proteases: cost and cleavage efficiency. Besides being much less expensive, the cleavage efficiency of CNBr has been reported to be up to twofold higher than enterokinase [50, 95].

An alternative approach for fusion protein cleavage requires the presence of the amino acid sequence Asp-Pro just N-terminal to the desired sequence. This cleavage method requires heating under strongly acidic conditions, as has been applied for the cleavage of a divercin V41 thioredoxin fusion [106]. This offers an inexpensive method to remove the fusion tag, although these may seem like unsuitable conditions for a peptide. However, class IIa bacteriocins tend to be stable at elevated temperatures and in acidic conditions [49].

The use of the intein-chitin-binding domain as a fusion partner allows for circumvention of several of the issues related to fusion proteins. Following the binding of the fusion protein on a chitin resin, cleavage is induced with DTT, resulting in elution of purified bacteriocin without requiring purification from the fusion partner. This has been successfully applied for a variety of class IIa bacteriocins, although the yields have not been very substantial [101].

Yeast expression platforms are another option for the production of class IIa bacteriocins. Saccharomyces cerevisiae has been used as an expression host for pediocin PA-1 [107] and plantaricin 423 [108]. Antimicrobial activity was indeed observed, and colonies of yeast growing on agar inoculated with Listeria showed zones of inhibition. However, very little antimicrobial activity was observed in the supernatant [107, 108]. This low level of activity may be attributed to the bacteriocin remaining associated with the fungal cell wall [107].

The use of Pichia pastoris as an expression host is more promising, showing much higher levels of activity. The levels of enterocin P produced by P. pastoris reached levels up to 28 mg/L, almost four-fold higher than that produced by the natural producer strain, Enterococcus faecium P13 [109]. However, the final purified yield of enterocin P from E. faecium P13 was still superior, demonstrating that improved purification methods are required to take advantage of any increased production. Class IIa-like bacteriocin hiracin JM79 has also been expressed in P. pastoris, with similar issues [91]. Although the quantified amount of bacteriocin exceeds that of the natural producer, the observed antimicrobial activity was found to be relatively smaller. Neutral proteases have been suggested as a possible reason for this discrepancy, and bacteriocin amounts may be overestimated due to the nature of the quantitative techniques used [91, 109]. Furthermore, the activity of pediocin PA-1 produced by P. pastoris was found to be inhibited by the presence of a collagen-like material, which appeared to be covalently bound to the pediocin [110].

4. In Vivo Utilization of Class IIa Bacteriocins

As previously discussed, most published work regarding the in vivo use of bacteriocins has focused on the introduction of probiotic bacteria to the gastrointestinal tract, where they will potentially secrete bacteriocins. Considerably less research has been done on the administration of purified bacteriocin. The use of probiotic strains may prove beneficial as a prophylactic, but the use of purified bacteriocins appears to be superior for countering an established infection. This has been demonstrated by the administration of either pediocin PA-1 or Pediococcus acidilactici UL5, a producer of pediocin PA-1, to mice infected with L. monocytogenes [40].

An important concern regarding the use of antibiotics is the effects they have on the microbiota of the body. The presence of commensal bacteria offers an invaluable barrier to infection by opportunistic pathogens. Ideally, an antimicrobial agent should specifically target the pathogenic bacteria with only minimal impact on the natural flora. In fact, the spectrum of activity for class IIa bacteriocins may be extremely well suited for targeting specific pathogens such as L. monocytogenes in vivo. Pediocin PA-1 has been tested in vitro against screens of common human intestinal bacteria such as bifidobacteria [75, 76], and at the concentrations tested, no antagonistic activity was observed against any of the assayed organisms. This differs from class I lantibiotics nisin A and nisin Z, both of which inhibited the majority of Gram-positive strains tested [75, 76]. Similarly, culture supernatant containing pediocin PA-1 was found to only inhibit one strain of a screen of common gut bacterial species [77]. Furthermore, an in vivo study of pediocin PA-1 in a mouse model showed no effect on the composition of the mouse intestinal flora. Likewise, purified pediocin PA-1 fed to rats did not affect the majority of their microbiota [77]. As a contrast, antibiotics such as penicillin and tetracycline strongly inhibited most of the common intestinal microbiota tested [76].

Two different routes of bacteriocin administration to fight L. monocytogenes have been tested in mouse models: intravenous [78, 79] and intragastric [40]. The effects of pediocin PA-1 have also been studied in uninfected mice [80], rabbits [80], and rats [77]. The suitability of the route depends on the nature of the pathogen being targeted, as well as the stage of the infection. However, as peptides, bacteriocins face challenges related to their structure not shared by many antibiotics.

Piscicolin 126, recombinant divercin RV41 (DvnRV41), and structural variants of DvnRV41 were all administered intravenously to mice previously or soon to be infected with L. monocytogenes [78, 79]. In the control, the intravenous and intraperitoneal injection of these bacteriocins into healthy mice resulted in no visible ill effects [78, 79]. The efficacy of intravenous administration of bacteriocin was tested both prior to and after the intravenous introduction of Listeria. Injection of bacteriocins was effective both 15 minutes prechallenge and 30 minutes postchallenge. However, administration of piscicolin 126 24 hours postchallenge showed no significant reduction in listerial counts. Both of these experiments used only 2 μg of purified bacteriocin. The intracellular nature of Listeria as a pathogen may explain the lack of sensitivity observed following bacteriocin administration 24 hours postchallenge [25].

A possible concern with the intravenous administration of peptides is the possibility of an immune response. Foreign peptides are often antigenic, and the introduction of these peptides could trigger an immune response. To test this, pediocin AcH was intraperitoneally introduced into mice and rabbits to determine its antigenic properties. However, it did not elicit an antibody response and appears to be nonimmunogenic [80]. In fact, approaches to develop antibodies to class IIa bacteriocins have required conjugation to polyacrylamide gel [81] or carrier proteins such as keyhole limpet hemocyanin [70, 71, 82, 83].

The intragastric administration of bacteriocins suffers from its own set of problems. Bacteriocins are subjected to harsh environments designed precisely for the proteolytic cleavage of peptides and proteins. Class IIa bacteriocins are susceptible to common digestive proteases. Furthermore, the stomach is a highly acidic environment. However, class IIa bacteriocins tend to be relatively stable to acidic conditions, and pediocin PA-1 was stable at pH 2.5 for at least two hours [84].

The stability of bacteriocins in the gastrointestinal tract has been examined by passing purified pediocin PA-1 through an artificial system mimicking the human stomach and small intestine [85]. Pediocin PA-1 retained some activity after 90 minutes in the artificial gastric conditions, while all activity was lost once the sample was in the duodenal compartment. It was suggested that pancreatin in the duodenum was responsible for the ultimate cleavage of the pediocin PA-1, while a combination of pepsin and low pH may be responsible for the decrease in activity observed in the gastric chamber. This is in agreement with in vivo results, as pediocin PA-1 fed to rats was not detected in their fecal samples [77]. Despite this, the intragastric administration of pediocin PA-1 has been proven effective for decreasing the load of L. monocytogenes in a mouse model [40]. Furthermore, encapsulation may preserve bacteriocin potency in the gastrointestinal tract, although this has not been reported for class IIa bacteriocins as of yet. However, encapsulating the lantibiotic nisin in liposomes has shown some success [8688].

The intragastric administration of pediocin PA-1 to mice infected with L. monocytogenes has been examined [40]. Treatment with 250 μg of pediocin PA-1 a day for three consecutive days resulted in a 2-log reduction in fecal listerial counts. L. monocytogenes generally crosses the epithelial barrier once it enters the small intestine and then spreads to the liver, spleen, and central nervous system [25]. This bacteriocin treatment was found to decrease the amount of L. monocytogenes reaching the liver and spleen [40].

4.1. Toxicity

An advantage that bacteriocins hold over some other antimicrobial therapies is their composition. These peptides can be easily broken down to simple nontoxic amino acids that are metabolized, although this also means that they may not be as long-lasting compared to antibiotics. However, information regarding the in vitro cytotoxicity of class IIa bacteriocins is relatively limited. The cytotoxicity of pediocin PA-1 was tested against simian virus 40-transfected human colon cells and Vero monkey kidney cells [111]. At the levels tested, pediocin PA-1 did show cytotoxic effects on both cell lines, with a bacteriocin dose of 700 AU/mL (likely around 10–20 mg/mL) causing a decrease of greater than 50% on the viable cell counts. Lower dosages also affected the viable cell count, although this was not as dramatic. However, combinations of carnobacteriocins BM1 and B2 at concentrations 100-fold higher than required for antimicrobial activity displayed no significant cytotoxic effects to the human gastrointestinal Caco-2 cell line [112]. The means of bacteriocin production and purification must also be considered with respect to potential toxic effects. Although this paper focuses on the administration of purified bacteriocin only, there still may be the possibility of toxic contaminants retained in the bacteriocin sample, which could confuse any toxicity results obtained.

Based on the differing results obtained from these two in vitro studies, further work must be done to carefully examine what amounts of class IIa bacteriocins can be used safely without cytotoxic effects. However, it is promising that mouse and rabbit models did not show detrimental effects from bacteriocin introduction [40, 79, 80].

4.2. Resistance Mechanisms

As with all therapeutic antibiotics, the development of resistance to class IIa bacteriocins in pathogenic bacteria is a critical issue to consider. This topic has been the subject of a recent review by Kaur et al. [113]. Much evidence has shown that the sensitivity of a bacterial strain to class IIa bacteriocins is dependent on the presence of a mannose phosphotransferase (MPT) transporter system [16, 114116]. Additionally, there is evidence that nonclass IIa bacteriocin lactococcin A also requires MPT as a receptor [17]. Decreased expression levels of MPT have been implicated in resistance to class IIa bacteriocins in many strains of L. monocytogenes insensitive to bacteriocins [114].

Beyond decreased receptor expression, L. monocytogenes and other susceptible strains have developed other resistance mechanisms. Multiple mechanisms may be operative at once contributing to an overall resistant phenotype. Modifications of the bacterial membrane have been implicated as another source of bacterial resistance. Alterations of the bacterial membrane, such that the acyl chains of phosphotidylglycerols are shorter and more unsaturated, affect membrane fluidity and the efficiency of bacteriocin insertion [117, 118]. Several other observed cell surface adaptations have been implicated in resistance, such as increasing the net positive charge on the membrane and lysinylation of membrane phospholipids [119].

Of special concern is the cross-resistance that has been observed for bacteriocins from different classes. For example, a strain of L. monocytogenes has shown resistance to nisin, pediocin PA-1, and leuconocin S, bacteriocins from three separate classes [120]. Based on this, the prospect of using multiple bacteriocins to overcome resistant strains may not be entirely feasible. Like other antibiotics, bacteriocins need to be used judiciously to minimize the spread of resistant phenotypes.

5. Conclusions

Class IIa bacteriocins are antagonistic to many important human pathogens. These bacteriocins have the ability to target a relatively narrow range of bacteria without affecting much of the natural microbiota of the body, which is an important advantage, especially when compared to other antibiotics. Although these bacteriocins do not target as many pathogens as other antibiotics, they have the potential to perform a very specific role. Having another tool to combat infections is especially important with consideration of the ever-growing problem of antibiotic resistance.

Although relatively little has been published about the actual in vivo use of class IIa bacteriocins to control bacterial infections, what is known is promising. Preliminary experiments have shown these bacteriocins to be effective at fighting L. monocytogenes infections in mouse models.

Now, more is known about the mode of action of bacteriocins, and attempts at engineering bacteriocins with greater potency and stability have been successful. Compared to some other classes of bacteriocins, class IIa bacteriocins are especially suitable for facile recombinant production and the preparation of analogues. Improved fermentation conditions in combination with scalable efficient purifications are now known, allowing for the industrial-scale production of pure bacteriocin. The recombinant production of class IIa bacteriocins as a variety of fusion proteins in E. coli has also been successful, allowing for the production of even greater amounts of bacteriocin.

The application of class IIa bacteriocins as therapeutic agents is a rapidly developing area, and there is still much to investigate. In particular, determination of their efficacy against pathogens other than L. monocytogenes is open for exploration and would further reveal their potential for therapeutic use. In addition, it would be informative to test these bacteriocins against a wider range of targets beyond Gram-positive bacteria, as they have displayed unexpected activity.

The methodology is now in place to produce and purify large amounts of class IIa bacteriocins. The preliminary characterization that has been done reveals that this class of bacteriocins possesses several desirable and useful properties as in vivo antimicrobial agents. What remains now is to use that knowledge to fully explore the suitability of these peptides as in vivo antibiotics.


This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Research Chair in Bioorganic and Medicinal Chemistry. The authors thank Marco van Belkum and Avena Ross for helpful suggestions.

1. Klaenhammer T. Genetics of bacteriocins produced by lactic acid bacteriaFEMS Microbiology ReviewsYear: 1993121–339868398217
2. Nes IF,Diep DB,Håvarstein LS,Brurberg MB,Eijsink V,Holo H. Biosynthesis of bacteriocins in lactic acid bacteriaAntonie van LeeuwenhoekYear: 1996702–41131288879403
3. Cotter PD,Hill C,Ross RP. Bacteriocins: developing innate immunity for foodNature Reviews MicrobiologyYear: 2005310777788
4. van Belkum MJ,Martin-Visscher LA,Vederas JC. Structure and genetics of circular bacteriocinsTrends in MicrobiologyYear: 201119841141821664137
5. Cintas LM,Casaus P,Fernandez MF,Hernandez PE. Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage and foodborne pathogenic bacteriaFood MicrobiologyYear: 1998153289298
6. Yamazaki K,Suzuki M,Kawai Y,Inoue N,Montville TJ. Purification and characterization of a novel class IIa bacteriocin, piscicocin CS526, from surimi-associated Carnobacterium piscicola CS526Applied and Environmental MicrobiologyYear: 200571155455715640235
7. van Belkum MJ,Stiles ME. Nonlantibiotic antibacterial peptides from lactic acid bacteriaNatural Product ReportsYear: 200017432333511014335
8. Ennahar S,Sashihara T,Sonomoto K,Ishizaki A. Class IIa bacteriocins: biosynthesis, structure and activityFEMS Microbiology ReviewsYear: 20002418510610640600
9. Diep DB,Nes IF. Ribosomally synthesized antibacterial peptides in gram positive bacteriaCurrent Drug TargetsYear: 20023210712211958295
10. Eijsink V,Axelsson L,Diep D,Håvarstein LS,Holo H,Nes IF. Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communicationAntonie van LeeuwenhoekYear: 2002811–463965412448760
11. Rodríguez JM,Martínez MI,Kok J. Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteriaCritical Reviews in Food Science and NutritionYear: 20024229112111934133
12. Drider D,Fimland G,Hechard Y,McMullen LM,Prevost H. The continuing story of class IIa bacteriocinsMicrobiology and Molecular Biology ReviewsYear: 200670256458216760314
13. Papagianni M,Anastasiadou S. Pediocins: the bacteriocins of pediococci. Sources, production, properties and applicationsMicrobial Cell FactoriesYear: 200983
14. Chikindas ML,Garcia-Garcera MJ,Driessen A,et al. Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cellsApplied and Environmental MicrobiologyYear: 19935911357735848285666
15. Chen Y,Ludescher R,Montville T. Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospholipid vesiclesApplied and Environmental MicrobiologyYear: 19976312477047779406395
16. Dalet K,Cenatiempo Y,Cossart P,et al. A σ(54)-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105MicrobiologyYear: 2001147123263326911739758
17. Diep DB,Skaugen M,Salehian Z,Holo H,Nes IF. Common mechanisms of target cell recognition and immunity for class II bacteriocinsProceedings of the National Academy of Sciences of the United States of AmericaYear: 200710472384238917284603
18. Kjos M,Salehian Z,Nes IF,Diep DB. An extracellular loop of the mannose phosphotransferase system component IIC is responsible for specific targeting by class IIa bacteriocinsJournal of BacteriologyYear: 2010192225906591320870773
19. Nissen-Meyer J,Rogne P,Oppergard C,Haugen HS,Kristiansen PE. Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteriaCurrent Pharmaceutical BiotechnologyYear: 2009101193719149588
20. Gallagher NL,Sailer M,Niemczura WP,Nakashima TT,Stiles ME,Vederas JC. Three-dimensional structure of leucocin a in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteriaBiochemistryYear: 1997364915062150729398233
21. Wang Y,Henz ME,Gallagher NL,et al. Solution structure of carnobacteriocin B2 and implications for structure-activity relationships among type IIa bacteriocins from lactic acid bacteriaBiochemistryYear: 19993847154381544710569926
22. Sprules T,Kawulka KE,Gibbs AC,Wishart DS,Vederas JC. NMR solution structure of the precursor for carnobacteriocin B2, an antimicrobial peptide from Carnobacterium piscicola: implications of the α-helical leader section for export and inhibition of type IIa bacteriocin activityEuropean Journal of BiochemistryYear: 200427191748175615096213
23. Uteng M,Hauge HH,Markwick P,et al. Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridgeBiochemistryYear: 20034239114171142614516192
24. Haugen HS,Fimland G,Nissen-Meyer J,Kristiansen PE. Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide curvacin ABiochemistryYear: 20054449161491615716331975
25. Ramaswamy V,Cresence VM,Rejitha JS,et al. Listeria—Review of epidemiology and pathogenesisJournal of Microbiology, Immunology and InfectionYear: 2007401413
26. Millette M,Cornut G,Dupont C,Shareck F,Archambault D,Lacroix M. Capacity of human nisin- and pediocin-producing lactic acid bacteria to reduce intestinal colonization by vancomycin-resistant enterococciApplied and Environmental MicrobiologyYear: 20087471997200318245231
27. Elegado FB,Kim WJ,Kwon DY. Rapid purification, partial characterization, and antimicrobial spectrum of the bacteriocin, Pediocin AcM, from Pediococcus acidilactici MInternational Journal of Food MicrobiologyYear: 19973711119237116
28. Beaulieu L. Production, Purification et Caracterisation de la Pediocine PA-1 Naturelle et de ses Formes Recombiantes: Contribution a la Mise en Evidence d’une Nouvelle Activite BiologiqueYear: 2004Quebec, CanadaUniversite Laval
29. Cornut G,Fortin C,Soulières D. Antineoplastic properties of bacteriocins revisiting potential active agentsAmerican Journal of Clinical OncologyYear: 200831439940418846002
30. Todorov SD,Wachsman M,Tomé E,et al. Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faeciumFood MicrobiologyYear: 201027786987920688228
31. Kirkup BC Jr. Bacteriocins as oral and gastrointestinal antibiotics: theoretical considerations, applied research, and practical applicationsCurrent Medicinal ChemistryYear: 200613273335335017168847
32. Chatterjee S,Chatterjee DK,Jani RH,et al. Mersacidin, a new antibiotic from Bacillus in vitro and in vivo antibacterial activityJournal of AntibioticsYear: 19924568398451500348
33. Goldstein BP,Wei J,Greenberg K,Novick R. Activity of nisin against Streptococcus pneumoniae, in vitro, and in a mouse infection modelJournal of Antimicrobial ChemotherapyYear: 19984222772789738856
34. Kruszewska D,Sahl HG,Bierbaum G,Pag U,Hynes SO,Ljungh A. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis modelJournal of Antimicrobial ChemotherapyYear: 200454364865315282239
35. Mota-Meira M,Morency H,Lavoie MC. In vivo activity of mutacin B-Ny266Journal of Antimicrobial ChemotherapyYear: 200556586987116155061
36. Brand AM,de Kwaadsteniet M,Dicks LMT. The ability of nisin F to control Staphylococcus aureus infection in the peritoneal cavity, as studied in miceLetters in Applied MicrobiologyYear: 201051664564921029139
37. Kim SY,Shin S,Koo HC,Youn JH,Paik HD,Park YH. In vitro antimicrobial effect and in vivo preventive and therapeutic effects of partially purified lantibiotic lacticin NK34 against infection by Staphylococcus species isolated from bovine mastitisJournal of Dairy ScienceYear: 20109383610361520655430
38. Jabes D,Brunati C,Candiani G,Riva S,Romano G,Donadio S. Efficacy of the new lantibiotic NAI-107 in experimental infections induced by MDR Gram positive pathogensEfficacy of the new lantibiotic NAI-107 in experimental infections induced by MDR Gram positive pathogensAntimicrobial Agents and ChemotherapyYear: 20115541671167621220527
39. Corr SC,Li Y,Riedel CU,O’Toole PW,Hill C,Gahan CGM. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118Proceedings of the National Academy of Sciences of the United States of AmericaYear: 2007104187617762117456596
40. Dabour N,Zihler A,Kheadr E,Lacroix C,Fliss I. In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenesInternational Journal of Food MicrobiologyYear: 2009133322523319541383
41. Valenta C,Bernkop-Schnürch A,Rigler HP. The antistaphylococcal effect of nisin in a suitable vehicle: a potential therapy for atopic dermatitis in manJournal of Pharmacy and PharmacologyYear: 19964899889918910870
42. Fimland G,Johnsen L,Axelsson L,et al. A C-terminal disulfide bridge in pediocin-like bacteriocins renders bacteriocin activity less temperature dependent and is a major determinant of the antimicrobial spectrumJournal of BacteriologyYear: 200018292643264810762272
43. Johnsen L,Fimland G,Meyer JN. The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrumJournal of Biological ChemistryYear: 2005280109243925015611086
44. Derksen DJ,Stymiest JL,Vederas JC. Antimicrobial leucocin analogues with a disulfide bridge replaced by a carbocycle or by noncovalent interactions of allyl glycine residuesJournal of the American Chemical SocietyYear: 200612844142521425317076487
45. Fleury Y,Dayem MA,Montagne JJ,et al. Covalent structure, synthesis, and structure-function studies of mesentericin Y 105(37), a defensive peptide from gram-positive bacteria Leuconostoc mesenteroidesJournal of Biological ChemistryYear: 19962712414421144298662868
46. Derksen DJ,Boudreau MA,Vederas JC. Hydrophobic interactions as substitutes for a conserved disulfide linkage in the type IIa bacteriocins, leucocin A and pediocin PA-1ChemBioChemYear: 20089121898190118642256
47. Sit CS,Vederas JC. Approaches to the discovery of new antibacterial agents based on bacteriocinsBiochemistry and Cell BiologyYear: 200886211612318443625
48. Johnsen L,Fimland G,Eijsink V,Nissen-Meyer J. Engineering increased stability in the antimicrobial peptide pediocin PA-1Applied and Environmental MicrobiologyYear: 200066114798480211055926
49. Quadri L,Sailer M,Roy KL,Vederas JC,Stiles ME. Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17BJournal of Biological ChemistryYear: 19942691612204122118163526
50. Jasniewski J,Cailliez-Grimal C,Gelhaye E,Revol-Junelles A. Optimization of the production and purification processes of carnobacteriocins Cbn BM1 and Cbn B2 from Carnobacterium maltaromaticum CP5 by heterologous expression in Escherichia coliJournal of Microbiological MethodsYear: 2008731414818316133
51. Tominaga T,Hatakeyama Y. Development of innovative pediocin PA-1 by DNA shuffling among class IIa bacteriocinsApplied and Environmental MicrobiologyYear: 200773165292529917601819
52. Kazazic M,Nissen-Meyer J,Fimland G. Mutational analysis of the role of charged residues in target-cell binding, potency and specificity of the pediocin-like bacteriocin sakacin PMicrobiologyYear: 200214872019202712101290
53. O’Shea EF,O’Connor PM,Cotter PD,Ross R,Hill C. Synthesis of trypsin-resistant variants of the Listeria bacteriocin salivaricin PApplied and Environmental MicrobiologyYear: 201076165356536220581174
54. Oppegård C,Rogne P,Kristiansen PE,Nissen-Meyer J. Structure analysis of the two-peptide bacteriocin lactococcin G by introducing D-amino acid residuesMicrobiologyYear: 201015661883188920203056
55. Yan LZ,Gibbs AC,Stiles ME,Wishart DS,Vederas JC. Analogues of bacteriocins: antimicrobial specificity and interactions of leucocin a with its enantiomer, carnobacteriocin B2, and truncated derivativesJournal of Medicinal ChemistryYear: 200043244579458111101349
56. Tominaga T,Hatakeyama Y. Determination of essential and variable residues in pediocin PA-1 by NNK scanningApplied and Environmental MicrobiologyYear: 20067221141114716461660
57. Carolissen-Mackay V,Arendse G,Hastings JW. Purification of bacteriocins of lactic acid bacteria: problems and pointersInternational Journal of Food MicrobiologyYear: 19973411169029252
58. Naghmouchi K,Fliss I,Drider D,Lacroix C. Pediocin PA-1 production during repeated-cycle batch culture of immobilized Pediococcus acidilactici UL5 cellsJournal of Bioscience and BioengineeringYear: 2008105551351718558343
59. Huang J,Lacroix C,Daba H,Simard RE. Pediocin 5 production and plasmid stability during continuous free and immobilized cell cultures of Pediococcus acidilactici UL5Journal of Applied BacteriologyYear: 19968066356448698665
60. Alvarez JAV,Gonzalez MP,Murado MA. Pediocin production by Pediococcus acidilactici in solid state culture on a waste medium: process simulation and experimental resultsBiotechnology and BioengineeringYear: 200485667668214966809
61. Guerra NP,Castro LP. Production of bacteriocins from Lactococcus lactis subsp. lactis CECT 539 and Pediococcus acidilactici NRRL B-5627 using mussel-processing wastesBiotechnology and Applied BiochemistryYear: 200236211912512241553
62. Goulhen F,Meghrous J,Lacroix C. Production of a nisin Z/pediocin mixture by pH-controlled mixed-strain batch cultures in supplemented whey permeateJournal of Applied MicrobiologyYear: 1999863399406
63. Guerra NP,Rua ML,Pastrana L. Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on wheyInternational Journal of Food MicrobiologyYear: 200170326728111764192
64. Guerra NP,Bernardez PF,Castro LP. Fed-batch pediocin production on whey using different feeding mediaEnzyme and Microbial TechnologyYear: 2007413397406
65. Vazquez JA,Gonzalez MP,Murado MA. Preliminary tests on nisin and pediocin production using waste protein sources: factorial and kinetic studiesBioresource TechnologyYear: 200697460561315913992
66. Yang R,Ray B. Factors influencing production of bacteriocins by lactic acid bacteriaFood MicrobiologyYear: 1994114281291
67. Uteng M,Hauge HH,Brondz I,Nissen-Meyer J,Fimland G. Rapid two-step procedure for large-scale purification of pediocin-like bacteriocins and other cationic antimicrobial peptides from complex culture mediumApplied and Environmental MicrobiologyYear: 200268295295611823243
68. Guyonnet D,Fremaux C,Cenatiempo Y,Berjeaud JM. Method for rapid purification of class IIa bacteriocins and comparison of their activitiesApplied and Environmental MicrobiologyYear: 20006641744174810742275
69. Beaulieu L,Aomari H,Groleau D,Subirade M. An improved and simplified method for the large-scale purification of pediocin PA-1 produced by Pediococcus acidilacticiBiotechnology and Applied BiochemistryYear: 2006432778416117726
70. Gutierrez J,Criado R,Citti R,et al. Performance and Applications of Polyclonal Antipeptide Antibodies Specific for the Enterococcal Bacteriocin Enterocin PJournal of Agricultural and Food ChemistryYear: 20045282247225515080629
71. Richard C,Drider D,Fliss I,Denery S,Prevost H. Generation and utilization of polyclonal antibodies to a synthetic C-terminal amino acid fragment of divercin V41, a class IIa bacteriocinApplied and Environmental MicrobiologyYear: 200470124825414711648
72. Cuozzo S,Calvez S,Prévost H,Drider D. Improvement of enterocin P purification processFolia MicrobiologicaYear: 200651540140517176759
73. Naghmouchi K,Drider D,Fliss I. Purification of pediocin PA-1 by immunoaffinity chromatographyJournal of AOAC InternationalYear: 200891482883218727543
74. Métivier A,Boyaval P,Duffes F,Dousset X,Compoint JP,Marion D. Triton X-114 phase partitioning for the isolation of a pediocin-like bacteriocin from Carnobacterium divergensLetters in Applied MicrobiologyYear: 2000301424610728559
75. Kheadr E,Bernoussi N,Lacroix C,Fliss I. Comparison of the sensitivity of commercial strains and infant isolates of bifidobacteria to antibiotics and bacteriocinsInternational Dairy JournalYear: 2004141210411053
76. le Blay G,Lacroix C,Zihler A,Fliss I. In vitro inhibition activity of nisin A, nisin Z, pediocin PA-1 and antibiotics against common intestinal bacteriaLetters in Applied MicrobiologyYear: 200745325225717718835
77. Bernbom N,Jelle B,Brogren CH,Vogensen FK,Nørrung B,Licht TR. Pediocin PA-1 and a pediocin producing Lactobacillus plantarum strain do not change the HMA rat microbiotaInternational Journal of Food MicrobiologyYear: 2009130325125719251334
78. Ingham A,Ford M,Moore RJ,Tizard M. The bacteriocin piscicolin 126 retains antilisterial activity in vivoJournal of Antimicrobial ChemotherapyYear: 20035161365137112716771
79. Rihakova J,Cappelier JM,Hue I,et al. In vivo activities of recombinant divercin V41 and its structural variants against Listeria monocytogenesAntimicrobial Agents and ChemotherapyYear: 201054156356419841145
80. Bhunia AK,Johnson MC,Ray B,Belden EL. Antigenic property of Pediocin AcH produced by Pediococcus acidilactici HJournal of Applied BacteriologyYear: 19906922112152272942
81. Bhunia AK. Monoclonal antibody-based enzyme immunoassay for pediocins of Pediococcus acidilacticiApplied and Environmental MicrobiologyYear: 1994608269226968085814
82. Martinez MI,Rodriguez JM,Suarez A,Martinez JM,Azcona JI,Hernandez PE. Generation of polyclonal antibodies against a chemically synthesized N-terminal fragment of the bacteriocin pediocin PA-1Letters in Applied MicrobiologyYear: 19972464884929203405
83. Martinez JM,Kok J,Sanders JW,Hernandez PE. Heterologous coproduction of enterocin A and pediocin PA-1 by Lactococcus lactis: detection by specific peptide-directed antibodiesApplied and Environmental MicrobiologyYear: 20006683543354910919819
84. Bhunia AK,Johnson MC,Ray B. Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilacticiJournal of Applied BacteriologyYear: 19886542612682906056
85. Kheadr E,Zihler A,Dabour N,Lacroix C,le Blay G,Fliss I. Study of the physicochemical and biological stability of pediocin PA-1 in the upper gastrointestinal tract conditions using a dynamic in vitro modelJournal of Applied MicrobiologyYear: 20101091546420059619
86. Benech RO,Kheadr EE,Laridi R,Lacroix C,Fliss I. Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed cultureApplied and Environmental MicrobiologyYear: 20026883683369012147460
87. Were LM,Bruce BD,Davidson PM,Weiss J. Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobialsJournal of Agricultural and Food ChemistryYear: 200351278073807914690399
88. Were L,Bruce B,Davidson PM,Weiss J. Encapsulation of nisin and lysozyme in liposomes enhances efficacy against Listeria monocytogenesJournal of Food ProtectionYear: 200467592292715151228
89. Rodríguez JM,Martínez MI,Horn N,Dodd HM. Heterologous production of bacteriocins by lactic acid bacteriaInternational Journal of Food MicrobiologyYear: 200380210111612381397
90. Gutierrez J,Larsen R,Cintas LM,Kok J,Hernandez PE. High-level heterologous production and functional expression of the sec-dependent enterocin P from Enterococcus faecium P13 in Lactococcus lactisApplied Microbiology and BiotechnologyYear: 2006721415116416297
91. Sanchez J,Borrero J,Gomez-Sala B,et al. Cloning and heterologous production of hiracin JM79, a Sec-dependent bacteriocin produced by Enterococcus hirae DCH5, in lactic acid bacteria and Pichia pastorisApplied and Environmental MicrobiologyYear: 20087482471247918310424
92. Reviriego C,Fernández L,Rodríguez JM. A food-grade system for production of pediocin PA-1 in nisin-producing and non-nisin-producing Lactococcus lactis strains: application to inhibit Listeria growth in a cheese model systemJournal of Food ProtectionYear: 200770112512251718044428
93. Quadri LEN,Yan LZ,Stiles ME,Vederas JC. Effect of amino acid substitutions on the activity of carnobacteriocin B2. Overproduction of the antimicrobial peptide, its engineered variants, and its precursor in Escherichia coliJournal of Biological ChemistryYear: 19972726338433889013580
94. Moon GS,Pyun YR,Kim WJ. Expression and purification of a fusion-typed pediocin PA-1 in Escherichia coli and recovery of biologically active pediocin PA-1International Journal of Food MicrobiologyYear: 2006108113614016403586
95. Beaulieu L,Tolkatchev D,Jetté JF,Groleau D,Subirade M. Production of active pediocin PA-1 in Escherichia coli using a thioredoxin gene fusion expression approach: cloning, expression, purification, and characterizationCanadian Journal of MicrobiologyYear: 200753111246125818026219
96. Richard C,Drider D,Elmorjani K,Marion D,Prévost H. Heterologous expression and purification of active divercin V41, a class IIa bacteriocin encoded by a synthetic gene in Escherichia coliJournal of BacteriologyYear: 2004186134276428415205430
97. LaVallie ER,DiBlasio EA,Kovacic S,Grant KL,Schendel PF,McCoy JM. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasmBio/TechnologyYear: 19931121871937763371
98. Liu SN,Han Y,Zhou ZJ. Fusion expression of pedA gene to obtain biologically active pediocin PA-1 in Escherichia coliJournal of Zhejiang University: Science BYear: 2011121657121194188
99. Gibbs GM,Davidson BE,Hillier AJ. Novel expression system for large-scale production and purification of recombinant class IIa bacteriocins and its application to piscicolin 126Applied and Environmental MicrobiologyYear: 20047063292329715184123
100. Miller KW,Schamber R,Chen Y,Ray B. Production of active chimeric pediocin AcH in Escherichia coil in the absence of processing and secretion genes from the Pediococcus pap operonApplied and Environmental MicrobiologyYear: 199864114209435056
101. Ingham AB,Sproat KW,Tizard MLV,Moore RJ. A versatile system for the expression of nonmodified bacteriocins in Escherichia coliJournal of Applied MicrobiologyYear: 200598367668315715871
102. Halami PM,Chandrashekar A. Heterologous expression, purification and refolding of an anti-listerial peptide produced by Pediococcus acidilactici K7Electronic Journal of BiotechnologyYear: 2007104563569
103. Klocke M,Mundt K,Idler F,Jung S,Backhausen JE. Heterologous expression of enterocin A, a bacteriocin from Enterococcus faecium, fused to a cellulose-binding domain in Escherichia coli results in a functional protein with inhibitory activity against ListeriaApplied Microbiology and BiotechnologyYear: 200567453253815660219
104. Moon GS,Pyun YR,Kim WJ. Characterization of the pediocin operon of Pediococcus acidilactici K10 and expression of his-tagged recombinant pediocin PA-1 in Escherichia coliJournal of Microbiology and BiotechnologyYear: 2005152403411
105. Makrides SC. Strategies for achieving high-level expression of genes in Escherichia coliMicrobiological ReviewsYear: 19966035125388840785
106. Yildirim S,Konrad D,Calvez S,Drider D,Prevost H,Lacroix C. Production of recombinant bacteriocin divercin V41 by high cell density Escherichia coli batch and fed-batch culturesApplied Microbiology and BiotechnologyYear: 200777352553117882416
107. Schoeman H,Vivier MA,du Toit M,Dicks LMT,Pretorius IS. The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccharomyces cerevisiaeYeastYear: 199915864765610392443
108. van Reenen CA,Chikindas ML,van Zyl WH,Dicks LMT. Characterization and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiaeInternational Journal of Food MicrobiologyYear: 2003811294012423916
109. Gutierrez J,Criado R,Martin M,Herranz C,Cintas LM,Hernandez PE. Production of enterocin P, an antilisterial pediocin-like bacteriocin from Enterococcus faecium P13, in Pichia pastonsAntimicrobial Agents and ChemotherapyYear: 20054973004300815980385
110. Beaulieu L,Groleau D,Miguez CB,Jetté JF,Aomari H,Subirade M. Production of pediocin PA-1 in the methylotrophic yeast Pichia pastoris reveals unexpected inhibition of its biological activity due to the presence of collagen-like materialProtein Expression and PurificationYear: 200543211112516023368
111. Murinda SE,Rashid KA,Roberts RF. In vitro assessment of the cytotoxicity of nisin, pediocin, and selected colicins on simian virus 40-transfected human colon and Vero monkey kidney cells with trypan blue staining viability assaysJournal of Food ProtectionYear: 200366584785312747695
112. Jasniewski J,Cailliez-Grimal C,Chevalot I,Milliere JB,Revol-Junelles AM. Interactions between two carnobacteriocins Cbn BM1 and Cbn B2 from Carnobacterium maltaromaticum CP5 on target bacteria and Caco-2 cellsFood and Chemical ToxicologyYear: 200947489389719271288
113. Kaur G,Malik RK,Mishra SK,et al. Nisin and class IIa bacteriocin resistance among Listeria and other foodborne pathogens and spoilage bacteriaMicrobial Drug ResistanceYear: 201117219720521417775
114. Gravesen A,Ramnath M,Rechinger KB,et al. High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenesMicrobiologyYear: 200214882361236912177330
115. Ramnath M,Arous S,Gravesen A,Hastings JW,Héchard Y. Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactisMicrobiologyYear: 200415082663266815289562
116. Kjos M,Nes IF,Diep DB. Mechanisms of resistance to bacteriocins targeting the mannose phosphotransferase systemApplied and Environmental MicrobiologyYear: 201177103335334221421780
117. Vadyvaloo V,Hastings JW,van der Merwe MJ,Rautenbach M. Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerolsApplied and Environmental MicrobiologyYear: 200268115223523012406708
118. Chen Y,Ludescher R,Montville TJ. Influence of lipid composition on pediocin PA-1 binding to phospholipid vesiclesApplied and Environmental MicrobiologyYear: 1998649353035329726911
119. Vadyvaloo V,Arous S,Gravesen A,et al. Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strainsMicrobiologyYear: 200415093025303315347760
120. Crandall AD,Montville TJ. Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotypeApplied and Environmental MicrobiologyYear: 19986412312379435079

Article Categories:
  • Review Article

Previous Document:  Evaluation of the BD GeneOhm MRSA and VanR Assays as a Rapid Screening Tool for Detection of Methici...
Next Document:  Antifungal resistance and new strategies to control fungal infections.