Document Detail

Design of polarization-dependent, flexural-torsional deformation in photo responsive liquid crystalline polymer networks.
MedLine Citation:
PMID:  24651881     Owner:  NLM     Status:  In-Data-Review    
Light responsive materials that exhibit wirelessly actuated, multidimensional deformation are excellent candidates for programmable matter applications such as morphing structures or soft robotics. A central challenge to designing adaptive structures from these materials is the ability accurately predict three dimensional deformations. Previous modeling efforts have focused almost exclusively on pure bending. Herein we examine key material parameters affecting light driven flexural-torsional response in azobenzene functionalized liquid crystal polymer networks. We show that a great deal of control can be obtained by specifying material alignment and actuating the material with polarized light. Insight gained from the theoretical framework here lays the foundation for more extensive modeling efforts to combine polarization controlled flexural-torsional deformations with complex geometry, boundary conditions, and loading conditions.
Matthew L Smith; Kyung Min Lee; Timothy J White; Richard A Vaia
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Soft matter     Volume:  10     ISSN:  1744-6848     ISO Abbreviation:  Soft Matter     Publication Date:  2014 Feb 
Date Detail:
Created Date:  2014-03-21     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101295070     Medline TA:  Soft Matter     Country:  England    
Other Details:
Languages:  eng     Pagination:  1400-10     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Bismuthoxyiodide Nanoflakes/Titania Nanotubes Arrayed p-n Heterojunction and Its Application for Pho...
Next Document:  Differences among western european countries in anticoagulation management of atrial fibrillation. D...