Document Detail

Deoxyribonuclease is a potential counter regulator of aberrant neutrophil extracellular traps formation after major trauma.
Jump to Full Text
MedLine Citation:
PMID:  22315507     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
INTRODUCTION: Neutrophil extracellular traps (NET) consist of a DNA scaffold that can be destroyed by Deoxyribonuclease (DNase). Thus DNases are potential prerequisites for natural counter regulation of NETs formation. In the present study, we determined the relationship of NETs and DNase after major trauma.
METHODS: Thirty-nine major trauma patients, 14 with and 25 without sepsis development were enrolled in this prospective study. Levels of cell-free (cf)-DNA/NETs and DNase were quantified daily from admission until day 9 after admission.
RESULTS: Levels of cf-DNA/NETs in patients who developed sepsis were significantly increased after trauma. In the early septic phase, DNase values in septic patients were significantly increased compared to patients without sepsis (P < 0.05). cf-DNA/NETs values correlated to values of DNase in all trauma patients and patients with uneventful recovery (P < 0.01) but not in septic patients. Recombinant DNase efficiently degraded NETs released by stimulated neutrophils in a concentration-dependent manner in vitro.
CONCLUSIONS: DNase degrades NETs in a concentration-dependent manner and therefore could have a potential regulatory effect on NET formation in neutrophils. This may inhibit the antibacterial effects of NETs or protect the tissue from autodestruction in inadequate NETs release in septic patients.
Authors:
Wei Meng; Adnana Paunel-Görgülü; Sascha Flohé; Ingo Witte; Michael Schädel-Höpfner; Joachim Windolf; Tim Tobias Lögters
Related Documents :
15193817 - A survey of outpatient management of elderly heart failure patients in poland-treatment...
14502297 - Heart rate variability in heart failure.
3163697 - The expression of autoimmune polyglandular disease type i appears associated with sever...
18675217 - Heart rate turbulence predicts all-cause mortality and sudden death in congestive heart...
19728017 - Significance of abnormal myocardial perfusion scintigraphy in young adult patients with...
6695817 - Electrophysiologic effects of flecainide acetate on sinus node function, anomalous atri...
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2012-01-23
Journal Detail:
Title:  Mediators of inflammation     Volume:  2012     ISSN:  1466-1861     ISO Abbreviation:  Mediators Inflamm.     Publication Date:  2012  
Date Detail:
Created Date:  2012-02-08     Completed Date:  2012-06-05     Revised Date:  2013-06-26    
Medline Journal Info:
Nlm Unique ID:  9209001     Medline TA:  Mediators Inflamm     Country:  United States    
Other Details:
Languages:  eng     Pagination:  149560     Citation Subset:  IM    
Affiliation:
Department of Trauma and Hand Surgery, University Hospital Dusseldorf, 40225 Dusseldorf, Germany.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Adolescent
Adult
Aged
DNA / chemistry,  immunology*
Deoxyribonuclease I / metabolism*
Female
Humans
Inflammation / immunology*,  pathology,  physiopathology
Macromolecular Substances / chemistry,  immunology*
Male
Middle Aged
Neutrophils / cytology,  immunology*
Prospective Studies
Sepsis / immunology,  microbiology,  physiopathology
Wounds and Injuries / immunology*,  pathology,  physiopathology
Young Adult
Chemical
Reg. No./Substance:
0/Macromolecular Substances; 9007-49-2/DNA; EC 3.1.21.1/Deoxyribonuclease I
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Mediators Inflamm
Journal ID (publisher-id): MI
ISSN: 0962-9351
ISSN: 1466-1861
Publisher: Hindawi Publishing Corporation
Article Information
Download PDF
Copyright © 2012 Wei Meng et al.
open-access:
Received Day: 23 Month: 9 Year: 2011
Accepted Day: 15 Month: 10 Year: 2011
Print publication date: Year: 2012
Electronic publication date: Day: 23 Month: 1 Year: 2012
Volume: 2012E-location ID: 149560
ID: 3270459
PubMed Id: 22315507
DOI: 10.1155/2012/149560

Deoxyribonuclease Is a Potential Counter Regulator of Aberrant Neutrophil Extracellular Traps Formation after Major Trauma
Wei MengI1
Adnana Paunel-GörgülüI1*
Sascha FlohéI1
Ingo WitteI1
Michael Schädel-HöpfnerI1
Joachim WindolfI1
Tim Tobias LögtersI1
Department of Trauma and Hand Surgery, University Hospital Dusseldorf, 40225 Dusseldorf, Germany
Correspondence: *Adnana Paunel-Görgülü: adnana.paunel-goeguelue@med.uni-duesseldorf.de
[other] Academic Editor: Frank Hildebrand

1. Introduction

Major trauma is associated with the induction of systemic inflammation, development of sepsis, and multiple organ failure (MOF) [13]. Neutrophils are the main types of effector cells in the innate immune system and are the first line against infection [47]. Activated polymorphonuclear neutrophils play a pivotal role in the systemic inflammatory response syndrome (SIRS) and development of sepsis after major trauma [8].

In addition to the more traditional mechanism of phagocytosis to kill bacteria, it has recently been shown that activation of neutrophils can cause the release of neutrophil extracellular traps (NETs) [9]. NETs are large DNA-associated molecule complexes carrying nucleic and cytoplasmic proteins such as histones, elastase, myeloperoxidase (MPO), pentraxin, lactoferrin, and bactericidal/permeability-increasing protein (BPI) [10, 11]. Each of them has got strong antimicrobial and/or immunomodulating properties. Upon activation (by e.g., IL-8, lipopolysaccharide, bacteria, fungi, or activated platelets) neutrophils start a program that leads to the formation of NETs [1214]. The formation of NETs, recently termed “NETosis”, is an active process and is distinct from neutrophil apoptosis and necrosis involving postmortem antimicrobial and proinflammatory immune responses [15]. NETs provide a high local concentration of antimicrobial components and bind, disarm, and kill microbes extracellularly as an emergency first line defense mechanism [9]. NET trapping in the tissue may allow the host to confine an infection and thus reduce the likelihood for the pathogens to spread into the bloodstream [12]. On the other hand, the high local concentration of NETs-associated effector molecules may contribute to severe tissue damage and organ dysfunction and/or failure [16].

Deoxyribonuclease (DNase) I, a Ca2+/Mg2+-dependent endonuclease, is the major nuclease found in body fluids such as serum and urine. Its primary function has been assumed to be the degradation of dietary DNA within the alimentary tract. Moreover, it has been shown that extracellular DNase may account for the chromatin breakdown during necrosis as a basis of protection against anti-DNA autoimmunity. DNA is the major structural component of NETs with granule proteins attached to this DNA backbone [9]. Thus, the DNA scaffold of NETs can be destroyed by DNase. So, aberrant NET formation in combination with lack of patient's DNases degrading NETs might contribute to their prolonged persistence with subsequent tissue damage and/or autoimmune diseases [1720]. Furthermore, DNases are expressed by several bacterial pathogens. Bacterial DNases act as a virulence determinant by counteracting NETs-mediated trapping, thereby promoting bacterial spread from local sites to the bloodstream [17, 18].

Recently it has been shown that NETs kinetics followed the inflammatory course after severe trauma [21]. In the current study we aimed to determined cfDNA/NETs and DNase in the serum of critically ill patients during the early posttraumatic phase. We further provide evidence for a DNase-mediated dissolution of NETs in vitro.


2. Materials and Methods
2.1. Patients

Thirty-nine patients were enrolled in this prospective study. Study approval was obtained from the Ethics Review Board of the University of Duesseldorf, Germany. Patients with blunt or penetrating multiple injuries who were admitted to our Level I Trauma Center with an Injury Severity Score (ISS) >16, and aged 18 years and older were enrolled in this study. Written informed consent was obtained from all participants or their legal representatives if the patients lacked consciousness. Exclusion criteria were death of the patient on day of admission or within the first two days on ICU and withdrawal of patient consent. In addition, patients with known preexisting immunological disorders or systemic immunosuppressive medication were excluded. The severity of injury was assessed by the ISS, based on the Abbreviated Injury Scale (AIS) [19]. SIRS and sepsis were defined using the criteria outlined 2005 from the International Sepsis Forum [20]. Patients were determined as septic if they fulfilled criteria for systemic inflammatory response syndrome and had a proven source of infection. Systemic inflammatory response syndrome was defined by two or more of the following criteria: temperature >38°C or <36°C; heart rate >90 beats per minute; respiratory rate >20 breaths per minute or arterial carbon dioxide tension (PaCO2) <32 mmHg; white blood cell count >12.000 cells/mm3 or <4.000 cells/mm3, or with >10% immature (band) forms. In order to evaluate organ dysfunction/failure, the Sequential Organ Failure Assessment (SOFA) and Multiple Organ Dysfunction (MOD) score were determined prospectively every day. In addition clinical laboratory data, including red and white blood counts, electrolytes, creatinine, blood urea nitrogen, C-reactive protein (CRP), and liver enzymes were monitored daily. Serum and EDTA blood were collected on admission to the emergency room (ER) and on days 1 to 10 after injury. Samples were centrifuged, immediately frozen, and stored at −80°C until further analysis.

2.2. cfDNA/NETs Assay

cfDNA/NETs were quantified using the Quant-iT PicoGreen dsDNA assay (Invitrogen GmbH, Darmstadt, Germany). This assay used to label neutrophil-derived NETs by targeting the NET containing cf-DNA directly within serum has been recently developed [22]. The fluorescence intensity reflects the amounts of DNA and was measured at excitation and emission wavelengths of 485 nm and 530 nm, respectively, in a microplate reader (Victor3, PerkinElmer, Waltham, USA) A standard calibration curve by means of defined calf thymus DNA (Sigma) amounts ranging from 0 to 2 μg/mL has been used in all analyses.

2.3. Quantification of Desoxyribonuklease (DNase) by ELISA

Desoxyribonuklease (DNase) levels in serum samples were measured by using ORG 590 DNase Activity Immunometric Enzyme Immunoassay for the Quantitative Determination of DNase Activity (ORGENTEC, Mainz, Germany) according to the manufacturer's instructions. Additionally, the concentration of DNase in human sera was quantified using known concentrations of the standard provided with rh-DNase1 (0.75 up to 12.5 ng/mL).

2.4. Isolation of Human Neutrophils

Human neutrophils were isolated by discontinuous density-gradient centrifugation on Percoll (Biochrom, Berlin, Germany) as previously described [23]. After hypotonic lysis to remove contaminating erythrocytes, cells were suspended in phosphate-buffered saline (PBS). Purity and viability were routinely >95% as assessed by forward and side scatter characteristics of FACScan (BD, Heidelberg, Germany) and trypan blue exclusion, respectively.

2.5. Stimulation of Neutrophils and NETs Release

Freshly isolated neutrophils from healthy volunteers were resuspended in RPMI 1640 containing 2 mM glutamine supplemented with 100 U/mL penicillin, 100 μg/mL streptomycin, and 10% heat inactivated fetal calf serum to a final concentration of 2 × 106/mL. Cells were stimulated with 5 nM PMA for 3 h at 37°C in a humidified atmosphere containing 5% CO2. Then cfDNA/NETs release was quantified in the supernatant. In addition, supernatants were incubated with 0, 0.02, 0.2, 2.0, and 10 μg/mL recombinant DNase (Pulmozyme, Roche, Swisse) for 3 h at 37°C before cfDNA/NETs quantification.

2.6. Immunofluorescence Staining of NETs

For immunofluorescence, freshly isolated neutrophils were seeded on poly-D-lysin-coated coverslips, allowed to adhere, and stimulated with 50 nM PMA for 3 h at 37°C. Cells were further fixed with 4% PFA and blocked with 5% NGS, 0.3% Triton X-100 in PBS for 30 min. To stain NETs, samples were incubated with a monoclonal mouse antimyeloperoxidase antibody (1 : 300) and a secondary FITC-conjugated antibody (1 : 200; both Dako, Hamburg, Germany). After staining of DNA with DAPI, specimens were mounted in Dako fluorescent mounting medium (Dako). Neutrophil-derived NET formation was visualized by immunofluorescence microscopy (Axiovert 100, Zeiss, Goettingen, Germany).

2.7. Statistical Analyses

To evaluate differences between the study groups, a Kruskal-Wallis test with Dunn's post hoc test was performed. Correlation between numerical values was evaluated by Spearman's rank correlation coefficient (r). The Mann-Whitney rank sum test was performed to compare two groups of values at the same time. Analyses were performed using GraphPad Prism software (version 5; GraphPad Software, San Diego, CA, USA). Data were considered to be statistically significant at P < 0.05.


3. Results
3.1. Demographics

The 39 patients (28 male, 11 female) enrolled into the study had an ISS of 38.8 ± 2.6 (mean ± SEM, range 16–75). The mean age was 45.2 ± 3.1 years (range 19–82 years). From all patients, 14 developed sepsis (sepsis group) within 5.8 ± 0.4 days (range 4–8 days) after admission. Infection site of sepsis and microbiological pathogens for each patient are depicted in Table 1. Three patients died posttraumatically after 55.2 ± 23.3 days (range 24–147 days). The mean ICU stay was 16.9 ± 2.4 days (range 2–74 days). The mean age of the 14 patients (3 female, 11 male) who subsequently developed sepsis was 50.3 ± 5.8 years (range, 21–82 years). The mean ISS in this patient group was 45.6 ± 4.9 (range, 16–75). Mean ISS in patients without sepsis was 35.0 ± 2.7 (range, 16–66). The mean ICU stay in the sepsis group was 25.5 ± 3.4 days (range 7–50 days) and in the group without development of a sepsis 12.1 ± 2.9 days (range 2–74 days).

3.2. cfDNA/NETs and DNase in Sepsis versus No Sepsis Group

cfDNA/NETs and DNase values were determined from admission to the emergency room (ER) until day 9 after trauma. In order to define normal values, blood samples from 10 healthy volunteers were analyzed for cfDNA/NETs (median, 116.3; interquartile range (IQR), 102.8 to 131.7 ng/mL) and DNAse (median, 3.15; IQR, 2.61 to 3.80 ng/mL).

Early after major trauma cf-DNA/NETs values were significantly enhanced in comparison to healthy donors, decreased within the next days but remain elevated above normal values of volunteers for the entire period (Figure 1(a)). However, cfDNA/NETs values of patients who subsequently developed sepsis increased again at day 5 until day 9 after trauma (day 5, median, 334.0; interquartile range (IQR), 209.4 to 482.2 ng/mL), whereas the values for those patients without development of sepsis remained on the same level (day 5, median, 178.3; interquartile range (IQR), 125.8 to 223.4 ng/mL; Figure 1(b)). Significant intergroup differences were detectable between sepsis and nonsepsis patients on days 5 to 9 as shown in Figure 1(b).

DNase values were also significantly increased on admission (heathly volunteers: median, 3.145; interquartile range (IQR), 2.614 to 3.799; all patients at day 0: median, 5.715; interquartile range (IQR), 3.400 to 7.119 ng/mL. Figure 2(a)). Regardless of the development of a sepsis or not, DNase values decreased within the next days for both groups and remained on the control level throughout the entire period.

Patients developed sepsis in the mean 5.8 ± 0.4 days (range 4–8 days) after trauma. In order to investigate the potential role of cfDNA/NETs and DNase values as markers for the onset of sepsis, we determined the highest values of both parameters on the day before (−1), the day of (0), and the day after (+1) diagnosis of sepsis (Figure 3). These values were compared to highest values between day 4 and 6 of patients without development of sepsis and healthy volunteers. During the early phase of a sepsis, cf-DNA/NETs and DNase in patients were significantly elevated compared to patients without development of sepsis after major trauma (P < 0.05) and healthy volunteers (P < 0.0001).

cf-DNA/NETs values strongly correlate to DNase values (r = 0.2523, P < 0.0001) after trauma. Furthermore, cf-DNA/NETs concentrations determined in patients without sepsis development after severe trauma strongly correlated with DNase (r = 0.207, P < 0.01). However, values did not correlate in patients who subsequently developed sepsis (r = 0.4771, P > 0.05).

3.3. Degradation of NETs by DNase Treatment

In order to prove the ability of DNase to degrade the scaffold of NETs in vitro, supernatants of stimulated neutrophils were incubated with DNase, and NETs were quantified by cf-DNA/NETs assay. As depicted in Figure 4(a), NETs were disintegrated in a concentration-dependent manner. Furthermore, qualitative evidence of DNase-mediated NET degradation has been shown by immunofluorescence (Figure 4(b)). Viable unstimulated neutrophils from healthy volunteers and neutrophils stimulated with PMA were fixed and stained for NET components (blue = DNA, green = MPO). The image of unstimulated neutrophils shows the nuclear localization of DNA and the granular pattern of MPO (top right). After stimulation, morphological changes during NET formation could be determined with loss of nuclear lobules and granular integrity of MPO (left bottom). Exposure of fixed NETs with rhDNase resulted in the disintegration of NETs with loss of DNA structures (right bottom).


4. Discussion

Formation of NETs has been discussed as an effective mechanism of the innate immune system and as relevant in infections, sepsis, and autoimmune diseases. NETs have been shown to trap various types of pathogens [21, 2426]. Although NETs have been demonstrated to effectively enhance bacterial trapping, this antibacterial mechanism occurs at the expense of injury to endothelium, tissue, and organs [21, 27].

We could confirm previously published results that cf-DNA/NETs are enhanced in the serum of trauma patients, especially those who later developed sepsis [28]. In this study we could show that particularly cfDNA/NETs values were enhanced in the very early phase of sepsis or even before clinical manifestation. This suggests a certain regulatory importance of this finding. Furthermore, in this phase DNase values in septic patients were also significantly increased compared to patients without sepsis and healthy volunteers. Moreover, NETs released by stimulated neutrophils in vitro were efficiently degradated by recombinant DNase in a concentration-dependent manner. All the data obtained in this study provide indication for an important pathophysiological role of cf-DNA/NETs and their relationship to DNase in the early phase of sepsis after trauma. The release of DNase may on one hand inhibit the antibacterial effects of NETs on the other hand DNase could protect the tissue from autodestruction caused by inadequate NETs release in septic patients. Furthermore DNase itself may have a regulatory function in NETs formation of neutrophils.

As their structural backbone is composed of chromatin, NETs are destroyed by DNase. The endonuclease DNase is the major nuclease normally produced by the pancreas and salivary glands and is a physiological constituent of human plasma at concentrations of approximately 3 ng/mL [29]. Brinkmann et al. have already shown in vitro that brief treatment of activated neutrophils with DNase abolishes microbial killing by NETs [9]. In our study this DNase-related dissociation of NETs in vitro has been confirmed by immunofluorescence. Furthermore DNase degrades NETs in a concentration-dependent manner. As after trauma DNase levels of all patients correlate to DNase values and both were significantly elevated in the early phase of sepsis after major trauma, an immunological-based interaction is possible. Given that NETs play a role in the pathogenesis of diverse immune disorders, the formation and activity of endogen-released DNases are prerequisites for natural counter regulation. It ought to be taken into account that adequate DNase release may inhibit the antibacterial effects of NETs or protect the tissue from autodestruction in inadequate NETs release in septic patients. Physiologic amounts of NETs are likely to be important in anti-infectious innate immune responses. In contrast, aberrant amounts of NETs, not sufficiently degraded by DNAses within the blood, may occlude capillaries, impair microcirculation, enzymatically damage tissues, and strongly promote inflammation. Patients who have low amounts of DNases in their blood are not able to adequately control NET formation and thus may have a higher risk to develop severe sequelae than patients with normal amounts of DNases.

Beside physiological production of DNases from pancreas and salivary gland cells, some bacteria protect themselves from trapping by degrading the NETs via endogenous DNase [22]. DNases are expressed by many Gram-positive bacterial pathogens [30], but their role in virulence has been unclear until the discovery of NETs. Beiter et al. showed that the surface endonuclease A (EndA) of Streptococcus pneumoniae enabled the bacteria to escape the immune system by degrading the DNA scaffolds of NETs [18]. Upon degradation by extracellular DNases excessively accumulated NETs within tissues or capillaries release NET-associated effector molecules enzymes such as neutrophil-derived elastase which may entail severe tissue damage. However, the effects of these proteins when released from NETs after degradation by natural or therapeutic DNase are unclear.

The assay used to label neutrophil-derived NETs by targeting the NET containing cf-DNA directly within serum has been recently developed. It has been shown to be specific for neutrophils since stimulation of other blood cells or other cells did not result in production of NETs or in increased fluorescence signals [22, 31]. The assumption that the cfDNA is a component of floating NETs has been supported by previous studies, in which MPO, as a granule component of NETs, strongly correlates to cfDNA/NETs values [22, 32]. However, as rightly remarked by the reviewer the definite proof in vivo that cfDNA largely derives from hyperactivated neutrophils in patients after multiple trauma has to be done.


5. Conclusions

Values of cf-DNA/NETs and DNase are significantly increased in the early phase of sepsis after major trauma. DNase degrades NETs in a concentration-dependent manner and may have a regulatory effect on NET formation in neutrophils. This may inhibit the antibacterial effects of NETs or protect the tissue from autodestruction in inadequate NETs release in septic patients. Furthermore, therapeutic strategies that limit NETs activity, for example, by DNase or DNase inhibitors treatment might prevent neutrophil-derived pathological effects possibly resulting in posttraumatic organ failure.


Conflict of Interests

The authors declare that they have no competing interests.


Acknowledgments

The authors wish to thank Mrs. Samira Seghrouchni and Jutta Schneider for excellent technical assistance. This study was supported by a grant from the Forschungskomission and the foundation for research of infectious immunological diseases of the Heinrich Heine University Duesseldorf.


References
1. Nathan C. Points of control in inflammationNatureYear: 2002420691784685212490957
2. Abraham E. Neutrophils and acute lung injuryCritical Care MedicineYear: 2003314S195S19912682440
3. Ramaiah SK,Jaeschke H. Role of neutrophils in the pathogenesis of acute inflammatory liver injuryToxicologic PathologyYear: 200735675776617943649
4. Brown K,Brain S,Pearson J,Edgeworth J,Lewis S,Treacher D. Neutrophils in development of multiple organ failure in sepsisLancetYear: 2006368953015716916829300
5. Paunel-Görgülü A,Flohé S,Scholz M,Windolf J,Lögters T. Increased serum soluble Fas after major trauma is associated with delayed neutrophil apoptosis and development of sepsisCritical CareYear: 2011151, article R20
6. Segal AW. How neutrophils kill microbesAnnual Review of ImmunologyYear: 200523197223
7. Mantovani A,Cassatella MA,Costantini C,Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunityNature Reviews ImmunologyYear: 2011118519531
8. Köller M,Wick M,Muhr G. Decreased leukotriene release from neutrophils after severe trauma: role of immature cellsInflammationYear: 2001251535911293666
9. Brinkmann V,Reichard U,Goosmann C,et al. Neutrophil extracellular traps kill bacteriaScienceYear: 200430356631532153515001782
10. Curran CS,Demick KP,Mansfield JM. Lactoferrin activates macrophages via TLR4-dependent and -independent signaling pathwaysCellular ImmunologyYear: 20062421233017034774
11. Jaillon S,Peri G,Delneste Y,et al. The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular trapsJournal of Experimental MedicineYear: 2007204479380417389238
12. Brinkmann V,Zychlinsky A. Beneficial suicide: why neutrophils die to make NETsNature Reviews MicrobiologyYear: 200758577582
13. Hakkim A,Fürnrohr BG,Amann K,et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritisProceedings of the National Academy of Sciences of the United States of AmericaYear: 2010107219813981820439745
14. Papayannopoulos V,Metzler KD,Hakkim A,Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular trapsJournal of Cell BiologyYear: 2010191367769120974816
15. Fuchs TA,Abed U,Goosmann C,et al. Novel cell death program leads to neutrophil extracellular trapsJournal of Cell BiologyYear: 2007176223124117210947
16. Ma AC,Kubes P. Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsisJournal of Thrombosis and HaemostasisYear: 20086341542018088344
17. Buchanan JT,Simpson AJ,Aziz RK,et al. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular trapsCurrent BiologyYear: 200616439640016488874
18. Beiter K,Wartha F,Albiger B,Normark S,Zychlinsky A,Henriques-Normark B. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular trapsCurrent BiologyYear: 200616440140716488875
19. Greenspan L,McLellan BA,Greig H. Abbreviated Injury Scale and injury severity score. A scoring chartJournal of TraumaYear: 198525160643965737
20. Calandra T,Cohen J. The International Sepsis Forum Consensus Conference on definitions of infection in the intensive care unitCritical Care MedicineYear: 20053371538154816003060
21. Clark SR,Ma AC,Tavener SA,et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic bloodNature MedicineYear: 2007134463469
22. Margraf S,Lögters T,Reipen J,Altrichter J,Scholz M,Windolf J. Neutrophil-derived circulating free DNA (CF-DNA/NETs): a potential prognostic marker for posttraumatic development of inflammatory second hit and sepsisShockYear: 200830435235818317404
23. Brinkmann V,Laube B,Abu Abed U,Goosmann C,Zychlinsky A. Neutrophil extracellular traps: how to generate and visualize themJournal of Visualized ExperimentsYear: 201036
24. Ermert D,Urban CF,Laube B,Goosmann C,Zychlinsky A,Brinkmann V. Mouse neutrophil extracellular traps in microbial infectionsJournal of Innate ImmunityYear: 20091318119320375576
25. Urban CF,Reichard U,Brinkmann V,Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans and hyphal formsCellular MicrobiologyYear: 20068466867616548892
26. Urban C,Zychlinsky A. Netting bacteria in sepsisNature MedicineYear: 2007134403404
27. Gupta AK,Joshi MB,Philippova M,et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell deathFEBS LettersYear: 2010584143193319720541553
28. Lögters T,Margraf S,Altrichter J,et al. The clinical value of neutrophil extracellular trapsMedical Microbiology and ImmunologyYear: 2009198421121919653000
29. Prince WS,Baker DL,Dodge AH,Ahmed AE,Chestnut RW,Sinicropi DV. Pharmacodynamics of recombinant human DNASE I in serumClinical and Experimental ImmunologyYear: 199811322892969717980
30. Wartha F,Beiter K,Normark S,Henriques-Normark B. Neutrophil extracellular traps: casting the NET over pathogenesisCurrent Opinion in MicrobiologyYear: 2007101525617208512
31. Altrichter J,Zedler S,Kraft R,et al. Neutrophil-derived circulating free DNA (cf-DNA/NETs), a potential prognostic marker for mortality in patients with severe burn injuryEuropean Journal of Trauma and Emergency SurgeryYear: 2010366551557
32. Lögters T,Paunel-Görgülü A,Zilkens C,et al. Diagnostic accuracy of neutrophil-derived circulating free DNA (cf-DNA/NETs) for septic arthritisJournal of Orthopaedic ResearchYear: 200927111401140719422041

Article Categories:
  • Clinical Study


Previous Document:  A comparative in vitro study of the effects of separate and combined products of Citrus e fructibus ...
Next Document:  Nanostructured, self-assembling peptide K5 blocks TNF-? and PGE? production by suppression of the AP...