Document Detail


Defining the pathogenesis of human mtDNA mutations using a yeast model: the case of T8851C.
MedLine Citation:
PMID:  22789932     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
More and more mutations are found in the mitochondrial DNA of various patients but ascertaining their pathogenesis is often difficult. Due to the conservation of mitochondrial function from yeast to humans, the unique ability of yeast to survive without production of ATP by oxidative phosphorylation, and the amenability of the yeast mitochondrial genome to site-directed mutagenesis, yeast is an excellent model for investigating the consequences of specific human mtDNA mutations. Here we report the construction of a yeast model of a point mutation (T8851C) in the mitochondrially-encoded subunit a/6 of the ATP synthase that has been associated with bilateral striatal lesions, a group of rare human neurological disorders characterized by symmetric degeneration of the corpus striatum. The biochemical consequences of this mutation are unknown. The T8851C yeast displayed a very slow growth phenotype on non-fermentable carbon sources, both at 28°C (the optimal temperature for yeast growth) and at 36°C. Mitochondria from T8851C yeast grown in galactose at 28°C showed a 60% deficit in ATP production. When grown at 36°C the rate of ATP synthesis was below 5% that of the wild-type, indicating that heat renders the mutation much more deleterious. At both growth temperatures, the mutant F(1)F(O) complex was correctly assembled but had only very weak ATPase activity (about 10% that of the control), both in mitochondria and after purification. These findings indicate that a block in the proton-translocating domain of the ATP synthase is the primary cause of the neurological disorder in the patients carrying the T8851C mutation.
Authors:
Roza Kucharczyk; Marie-France Giraud; Daniel Brèthes; Monica Wysocka-Kapcinska; Nahia Ezkurdia; Bénédicte Salin; Jean Velours; Nadine Camougrand; Francis Haraux; Jean-Paul di Rago
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-7-9
Journal Detail:
Title:  The international journal of biochemistry & cell biology     Volume:  -     ISSN:  1878-5875     ISO Abbreviation:  -     Publication Date:  2012 Jul 
Date Detail:
Created Date:  2012-7-13     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9508482     Medline TA:  Int J Biochem Cell Biol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012. Published by Elsevier Ltd.
Affiliation:
Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université Bordeaux Segalen, 1 Rue Camille SaintSaëns, Bordeaux 33077 cedex, France; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  The economic costs of disease related malnutrition.
Next Document:  Non-invasive integrative analysis of contraction energetics in intact beating heart.