Document Detail


Decreased foot inversion force and increased plantar surface after maximal incremental running exercise.
MedLine Citation:
PMID:  23313412     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Formulating the hypothesis that a maximal running exercise could induce fatigue of some foot muscles, we searched for electromyographic (EMG) signs of fatigue in the tibialis anterior (TA), peroneus longus (PL), and gastrocnemius medialis (GM) muscles. We also searched for post-exercise alterations of the stationary upright standing in normal-arched feet subjects. Healthy subjects performed a maximal running exercise. Surface EMGs of the TA, PL, and GM muscles were analysed during maximal dynamic efforts. Before and after the running bout, we measured the evoked compound muscle potential (M-wave) in TA, the maximal force into inversion (MIF), and the repartition of the plantar and barycentre surfaces with a computerised stationary platform. During maximal running exercise, the median frequency of the EMG spectra declined in TA while it remained stable in the PL and GM muscles. After the exercise, MIF decreased, and both the rearfoot plantar surface and the barycentre surface increased. We concluded that a maximal running bout elicits EMG signs of fatigue, though only in the TA muscle. It also elicits post-exercise changes in the foot position during stationary upright standing which indicates a foot eversion. These data solely concern a maximal running test and they can not be extrapolated to walking or running at a low speed.
Authors:
Bruno Vie; Christelle Brerro-Saby; Jean Paul Weber; Yves Jammes
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-10
Journal Detail:
Title:  Gait & posture     Volume:  -     ISSN:  1879-2219     ISO Abbreviation:  Gait Posture     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-1-14     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9416830     Medline TA:  Gait Posture     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 Elsevier B.V. All rights reserved.
Affiliation:
Ecole de Podologie de Marseille, Marseille, France.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Haptic feedback from manual contact improves balance control in people with Parkinson's disease.
Next Document:  Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I.