Document Detail

Decline in cellular clearance systems induces inflammasome signaling in human ARPE-19 cells.
MedLine Citation:
PMID:  25268952     Owner:  NLM     Status:  Publisher    
Retinal pigment epithelium (RPE) plays a major role in the maintenance of photoreceptors, and degeneration of RPE results in the development of age-related macular degeneration (AMD). Accumulation of intracellular protein aggregates, increased oxidative stress, and chronic inflammation are all factors damaging the functionality of aged RPE cells. Here, we report that inhibition of proteasomal degradation with MG-132 and autophagy with bafilomycin A1 resulted in the release of IL-1β but not that of IL-18 in human ARPE-19 cells. NLRP3 receptor became upregulated, and caspase-1, the functional component of an inflammasome complex, was activated. In addition to accumulating intracellular protein aggregates, inhibition of degradation systems induced oxidative stress which was demonstrated by elevated amounts of intracellular 4-hydroxynonenal (HNE)-protein adducts. Along with IL-1β, exposure to MG-132 and bafilomycin A1 resulted in the secretion of IL-8. A low concentration (1pg/ml) of IL-1β was capable of triggering significant IL-8 production which also became attenuated by treatment with a specific caspase-1 inhibitor. These results suggest that decline in intracellular degradation systems results not only in increased amounts of intracellular protein aggregates and oxidative stress but also in the activation of NLRP3 inflammasomes, arisen as a result of elevated production of biologically active IL-1β.
Niina Piippo; Ayhan Korkmaz; Maria Hytti; Kati Kinnunen; Antero Salminen; Mustafa Atalay; Kai Kaarniranta; Anu Kauppinen
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-9-27
Journal Detail:
Title:  Biochimica et biophysica acta     Volume:  -     ISSN:  0006-3002     ISO Abbreviation:  Biochim. Biophys. Acta     Publication Date:  2014 Sep 
Date Detail:
Created Date:  2014-9-30     Completed Date:  -     Revised Date:  2014-10-1    
Medline Journal Info:
Nlm Unique ID:  0217513     Medline TA:  Biochim Biophys Acta     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2014. Published by Elsevier B.V.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Multidimensional poverty in rural mozambique: a new metric for evaluating public health intervention...
Next Document:  The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria.