Document Detail


Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system.
MedLine Citation:
PMID:  22841923     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
End-stage renal failure is a devastating disease, with donor organ transplantation as the only functional restorative treatment. The current number of donor organs meets less than one-fifth of demand, so regenerative medicine approaches have been proposed as potential therapeutic alternatives. One such approach for whole large-organ bioengineering is to combine functional renal cells with a decellularized porcine kidney scaffold. The efficacy of cellular removal and biocompatibility of the preserved porcine matrices, as well as scaffold reproducibility, are critical to the success of this approach. We evaluated the effectiveness of 0.25 and 0.5% sodium dodecyl sulfate (SDS) and 1% Triton X-100 in the decellularization of adult porcine kidneys. To perform the decellularization, a high-throughput system was designed and constructed. In this study all three methods examined showed significant cellular removal, but 0.5% SDS was the most effective detergent (<50 ng DNA/mg dry tissue). Decellularized organs retained intact microarchitecture including the renal vasculature and essential extracellular matrix components. The SDS-treated decellularized scaffolds were non-cytotoxic to primary human renal cells. This method ensures clearance of porcine cellular material (which directly impacts immunoreactivity during transplantation) and preserves the extracellular matrix and cellular compatibility of these renal scaffolds. Thus, we have developed a rapid decellularization method that can be scaled up for use in other large organs, and this represents a step toward development of a transplantable organ using tissue engineering techniques.
Authors:
David C Sullivan; Sayed-Hadi Mirmalek-Sani; Daniel B Deegan; Pedro M Baptista; Tamer Aboushwareb; Anthony Atala; James J Yoo
Related Documents :
22570843 - Simultaneous bilateral quadriceps tendon rupture in patient with chronic renal failure.
22612453 - Solitary solid renal mass: can we predict malignancy?
15110133 - Intrahepatic arterial administration of low-dose methotrexate in patients with severe h...
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-7-27
Journal Detail:
Title:  Biomaterials     Volume:  -     ISSN:  1878-5905     ISO Abbreviation:  -     Publication Date:  2012 Jul 
Date Detail:
Created Date:  2012-7-30     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8100316     Medline TA:  Biomaterials     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 Elsevier Ltd. All rights reserved.
Affiliation:
Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA; Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Medical Center Blvd, Winston-Salem, NC 27157, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chon...
Next Document:  Steadily propagating waves of a chemotaxis model.