Document Detail


DNA Methylation Profiles Define Stem Cell Identity and Reveal a Tight Embryonic-Extraembryonic Lineage Boundary.
MedLine Citation:
PMID:  23034951     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Embryonic (ES) and epiblast (EpiSC) stem cells are pluripotent but committed to an embryonic lineage fate. Conversely, trophoblast (TS) and extraembryonic endoderm (XEN) stem cells contribute predominantly to tissues of the placenta and yolk sac, respectively. Here we show that each of these four stem cell types is defined by a unique DNA methylation profile. Despite their distinct developmental origin, TS and XEN cells share key epigenomic hallmarks, chiefly characterized by robust DNA methylation of embryo-specific developmental regulators, as well as a subordinate role of 5-hydroxymethylation. We also observe a substantial methylation reinforcement of pre-existing epigenetic repressive marks that specifically occurs in extraembryonic stem cells compared to in vivo tissue, presumably due to continued high Dnmt3b expression levels. These differences establish a major epigenetic barrier between the embryonic and extraembryonic stem cell types. In addition, epigenetic lineage boundaries also separate the two extraembryonic stem cell types by mutual repression of key lineage-specific transcription factors. Thus, global DNA methylation patterns are a defining feature of each stem cell type that underpin lineage commitment and differentiative potency of early embryo-derived stem cells. Our detailed methylation profiles identify a cohort of developmentally regulated sequence elements, such as orphan CpG islands, that will be most valuable to uncover novel transcriptional regulators and pivotal 'gatekeeper' genes in pluripotency and lineage differentiation.
Authors:
Claire E Senner; Felix Krueger; David Oxley; Simon Andrews; Myriam Hemberger
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-10-3
Journal Detail:
Title:  Stem cells (Dayton, Ohio)     Volume:  -     ISSN:  1549-4918     ISO Abbreviation:  Stem Cells     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-10-4     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9304532     Medline TA:  Stem Cells     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 AlphaMed Press.
Affiliation:
Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Serial Procalcitonin Levels to Detect Bacteremia in Febrile Neutropenia.
Next Document:  Increase in multiple sclerosis activity after assisted reproduction technology.