Document Detail

Cross-talk between amino acid residues and flavonoid derivatives: insights into their chemical recognition.
MedLine Citation:
PMID:  23086511     Owner:  NLM     Status:  Publisher    
Currently, there is a general consensus that flavonoids exert their antioxidant activity through their ability to interact with a broad range of proteins, enzymes and transcription factors rather than acting as conventional hydrogen-donating antioxidants. For this, the effect of different chemical groups of the conjugated flavonoid metabolites is apparently playing a pivotal role. Yet, many questions concerning the relevant molecular mechanisms still remain open. It is therefore crucial to gain a deeper insight into the amino acid residue-flavonoid interaction. Here we show extensive theoretical thermodynamic data and structural characteristics of the interaction of chalcone, genistein, epigallocatechin gallate, and quercetin and some of its metabolites with amino acid residues. By correlating (a) the binding energies of flavonoids-amino acid residues, (b) the hydrophobicity of amino acids, and (c) the abundance of amino acid residues in the binding sites of proteins, we can conclude that flavonoids appear to be strongly bonded to only few charged hydrophilic amino acids in the protein pockets, and rather weakly bonded to the majority of amino acid residues in the binding sites. This finding strongly impacts the understanding of the chemical recognition of flavonoids and their metabolites in their interaction with proteins and would contribute to a better design of further experimental studies. Particularly, the amino acids Phe, Leu, Ile and Trp seem to play a crucial role in the dynamics of flavonoid ligands in the binding sites of proteins.
A Daniel Boese; Edelsys Codorniu-Hernández
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-10-19
Journal Detail:
Title:  Physical chemistry chemical physics : PCCP     Volume:  -     ISSN:  1463-9084     ISO Abbreviation:  Phys Chem Chem Phys     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-10-22     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  100888160     Medline TA:  Phys Chem Chem Phys     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Department of Chemistry, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Efficacy and safety of deferasirox at low and high iron burdens: results from the EPIC magnetic reso...
Next Document:  Rapid development of molecular markers by next-generation sequencing linked to a gene conferring pho...