Document Detail


CovalentDock: Automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constrains.
MedLine Citation:
PMID:  23034731     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Covalent linkage formation is a very important mechanism for many covalent drugs to work. However, partly due to the limitations of proper computational tools for covalent docking, most covalent drugs are not discovered systematically. In this article, we present a new covalent docking package, the CovalentDock, built on the top of the source code of Autodock. We developed an empirical model of free energy change estimation for covalent linkage formation, which is compatible with existing scoring functions used in docking, while handling the molecular geometry constrains of the covalent linkage with special atom types and directional grid maps. Integrated preparation scripts are also written for the automation of the whole covalent docking workflow. The result tested on existing crystal structures with covalent linkage shows that CovalentDock can reproduce the native covalent complexes with significant improved accuracy when compared with the default covalent docking method in Autodock. Experiments also suggest that CovalentDock is capable of covalent virtual screening with satisfactory enrichment performance. In addition, the investigation on the results also shows that the chirality and target selectivity along with the molecular geometry constrains are well preserved by CovalentDock, showing great capability of this method in the application for covalent drug discovery. © 2012 Wiley Periodicals, Inc.
Authors:
Xuchang Ouyang; Shuo Zhou; Chinh Tran To Su; Zemei Ge; Runtao Li; Chee Keong Kwoh
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-10-4
Journal Detail:
Title:  Journal of computational chemistry     Volume:  -     ISSN:  1096-987X     ISO Abbreviation:  J Comput Chem     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-10-4     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9878362     Medline TA:  J Comput Chem     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 Wiley Periodicals, Inc.
Affiliation:
BioInformatics Research Centre, School of Computer Engineering, Nanyang Technological University, Singapore 639798.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes wi...
Next Document:  ASPECTS OF FORWARD SCATTERING FROM THE COMPRESSION PADDLE IN THE DOSIMETRY OF MAMMOGRAPHY.