Document Detail


Controlled MOCVD growth of Bi(2)Se(3) topological insulator nanoribbons.
MedLine Citation:
PMID:  23059371     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
Topological insulators are a new class of materials that support topologically protected electronic surface states. Potential applications of the surface states in low dissipation electronic devices have motivated efforts to create nanoscale samples with large surface-to-volume ratios and highly controlled stoichiometry. Se vacancies in Bi(2)Se(3) give rise to bulk conduction, which masks the transport properties of the surface states. We have therefore developed a new route for the synthesis of topological insulator nanostructures using metalorganic chemical vapour deposition (MOCVD). MOCVD allows control of the Se/Bi flux ratio during growth. With the aim of rational growth, we vary the Se/Bi flux ratio, growth time, and substrate temperature, and observe morphological changes which indicate a growth regime in which nanoribbon formation is limited by the Bi precursor mass flow. MOCVD growth of Bi(2)Se(3) nanostructures occurs via a distinct growth mechanism that is nucleated by gold nanoparticles at the base of the nanoribbon. By tuning the reaction conditions, we obtain either single-crystalline ribbons up to 10 μm long or thin micron-sized platelets.
Authors:
L D Alegria; J R Petta
Publication Detail:
Type:  Journal Article     Date:  2012-10-11
Journal Detail:
Title:  Nanotechnology     Volume:  23     ISSN:  1361-6528     ISO Abbreviation:  Nanotechnology     Publication Date:  2012 Nov 
Date Detail:
Created Date:  2012-10-12     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101241272     Medline TA:  Nanotechnology     Country:  England    
Other Details:
Languages:  eng     Pagination:  435601     Citation Subset:  IM    
Affiliation:
Department of Physics, Princeton University, Princeton, NJ 08544, USA. Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Human Homologue of Drosophila Ariadne (HHARI) is a marker of cellular proliferation associated with ...
Next Document:  Interrogating erosion-based drug liberation phenomena from hydrophilic matrices using near infrared ...