Document Detail

Complications of grafts used in female pelvic floor reconstruction: Mesh erosion and extrusion.
Jump to Full Text
MedLine Citation:
PMID:  19675793     Owner:  NLM     Status:  PubMed-not-MEDLINE    
INTRODUCTION: Various grafts have been used in the treatment of urinary incontinence and pelvic prolapse. Autologous materials such as muscle and fascia were first utilized to provide additional anatomic support to the periurethral and pelvic tissues; however, attempts to minimize the invasiveness of the procedures have led to the use of synthetic materials. Complications such as infection and erosion or extrusion associated with these materials may be troublesome to manage. We review the literature and describe a brief overview of grafts used in pelvic floor reconstruction and focus on the management complications specifically related to synthetic materials.
MATERIALS AND METHODS: We performed a comprehensive review of the literature on grafts used in pelvic floor surgery using MEDLINE and resources cited in those peer-reviewed manuscripts. The results are presented.
RESULTS: Biologic materials provide adequate cure rates but have associated downfalls including potential complications from harvesting, variable tissue quality and cost. The use of synthetic materials as an alternative graft in pelvic floor repairs has become a popular option. Of all synthetic materials, the type I macroporous polypropylene meshes have demonstrated superiority in terms of efficacy and fewer complication rates due to their structure and composition. Erosion and extrusion of mesh are common and troublesome complications that may be managed conservatively with observation with or without local hormone therapy, with transvaginal debridement or with surgical exploration and total mesh excision, dependent upon the location of the mesh and the mesh type utilized.
CONCLUSIONS: The ideal graft would provide structural integrity and durability with minimal adverse reaction by the host tissue. Biologic materials in general tend to have fewer associated complications, however, the risks of harvesting, variable integrity of allografts, availability and high cost has led to the development and use of synthetic grafts. Synthetic grafts have a tendency to cause higher rates of erosion and extrusion; however, these complications can be managed successfully.
Tanya M Nazemi; Kathleen C Kobashi
Related Documents :
2783093 - Faecal incontinence: manometric and radiological changes following postanal repair.
15667863 - Effect of transobturator tape procedure on proximal urethral mobility.
12435973 - The new frenchay artificial cervical joint: results from a two-year pilot study.
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Indian journal of urology : IJU : journal of the Urological Society of India     Volume:  23     ISSN:  0970-1591     ISO Abbreviation:  Indian J Urol     Publication Date:  2007 Apr 
Date Detail:
Created Date:  2009-08-13     Completed Date:  2011-07-14     Revised Date:  2013-05-23    
Medline Journal Info:
Nlm Unique ID:  8510441     Medline TA:  Indian J Urol     Country:  India    
Other Details:
Languages:  eng     Pagination:  153-60     Citation Subset:  -    
Continence Center at Virginia Mason Medical Center, Seattle, Washington, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Indian J Urol
Journal ID (publisher-id): IJU
ISSN: 0970-1591
ISSN: 1998-3824
Publisher: Medknow Publications, India
Article Information
? Indian Journal of Urology
Print publication date: Season: Apr?Jun Year: 2007
Volume: 23 Issue: 2
First Page: 153 Last Page: 160
ID: 2721525
PubMed Id: 19675793
Publisher Id: IJU-23-153
DOI: 10.4103/0970-1591.32067

Complications of grafts used in female pelvic floor reconstruction: Mesh erosion and extrusion
Tanya M. NazemiAF0001
Kathleen C. KobashiAF0001
Continence Center at Virginia Mason Medical Center, Seattle, Washington, USA
Correspondence: For correspondence: Kathleen C. Kobashi, Virginia Mason Medical Center, 1100 9th AVE C-7 URO, Seattle, WA 98111. E-mail:

The use of graft materials in pelvic floor reconstruction is now a common practice. The evolution of grafts from autologous muscle and fascia has produced new materials that will hopefully prove to be efficacious and durable. This review aims to provide an overview of the different materials available for use in pelvic floor surgery and to discuss the potential complications, in particular erosion and extrusion, associated with synthetic materials.


The decision to use a graft in the repair of the pelvic floor is based on a number of factors including the tissue quality of the patient, history of previous repairs and concomitant procedures to be performed. The ideal material should be strong, sterile, permanent, nonallergenic, inert, free of risk of infection, infectious transmission, erosion and extrusion and affordable.[1] In 1997, the female stress urinary incontinence clinical guidelines panel performed a meta-analysis of the literature from 1994-1997 and found an overall vaginal extrusion rate of 0.0001% vs. 0.007% for autologous and synthetic materials, respectively. Similarly, urethral erosion rates were noted in 0.003% and 0.02%, respectively.[2]


Graft materials may be categorized as biologic or synthetic. Biologic materials include autologous grafts, allografts and xenografts [Table 1]. Biografts were initially used for their histological similarity to human tissue, in vivo tissue remodeling and reduced erosion rates.[3] Specific advantages and disadvantages are noted with each type of graft material.

Autologous grafts

Autologous grafts that are commonly harvested for repairs are rectus fascia and fascia lata. Clear advantages to using the patient's own tissue are decreased risk of erosion, rejection and infection. Since autologous fascia was one of the original graft materials utilized in pelvic floor repair, there is longer term data to suggest that the grafts provide durable results. A recent retrospective review was performed on 303 women who underwent autologous and cadaveric grafts over a nine-year period with a minimum 12-month follow-up. The results showed higher rates of recurrent leakage and reoperation for stress urinary incontinence (39.6% vs. 28.3% and 12.7% vs. 3.3%, respectively) following the use of cadaveric versus autologous fascia.[4] However, the use of autologous materials was associated with increased pain, risk of hernia formation at the harvesting site and increased operative time. Nevertheless, both allografts and autografts can be of variable quality depending on the patient's age and associated medical conditions.


Because of the potential morbidity associated with harvesting autologous fascia, the use of allograft tissue can be a desirable alternative. Human tissue procured from cadavers is harvested within 24h of death and is cultured and processed to reduce potential risk of disease transmission. The graft materials most commonly used include cadaveric fascia lata and dermis. Processing techniques to sterilize and prepare these tissues include irradiation, freeze-drying or solvent dehydration. The different processing techniques can affect the integrity of the grafts, which is a potential disadvantage with cadaveric materials; however, the discussion of the biomechanics of the allograft tissues is beyond the scope of this manuscript. Despite these techniques, there is still a remote risk of 1/1,667,600 for transmission of human immunodeficiency virus and a theoretical risk of prion transmission.[5, 6] Historically used materials such as the lyophilized, irradiated human dura mater Lyodura (B Braun Melsungen AG, Germany) were associated with higher rates of transmission of the Creutzfeldt-Jakob disease. Other disadvantages to using these materials include availability and cost. Nevertheless, the overall reported success for allografts in pelvic repairs has been good (84-98%) with low extrusion rates.[7, 8]

Amundsen et al reviewed 104 patients who underwent placement of allograft fascia lata pubovaginal slings with 19.4 ? 10.3 month follow-up. No vaginal extrusions or urinary tract erosions were noted.[7] Another review of 69 patients who underwent pelvic repair using dermal allograft material was performed by Drake et al who noted a 10.9% vaginal extrusion rate. All cases were managed expectantly and with vaginal estrogen cream and all resolved spontaneously.[9] Others, including the authors, have had favorable experience with conservative management of cadaveric fascial extrusion and do not believe that formal surgical excision is generally necessary. This review does not provide an exhaustive analysis of all biograft studies; however, Table 2 lists the extrusion rates reported in some allograft series.


Xenografts such as porcine dermis and small intestinal submucosa (SIS) provide other biograft alternatives. These materials offer potential advantages over allografts in that they are more readily available and there is no theoretical risk of human viral transmission. Porcine SIS and dermis are processed to remove cellular components, leaving only collagen and elastin fibers that do not elicit an immune response. This allows for remodeling of the sling by host tissue.[10?12] Two separate prospective randomized studies comparing porcine dermal pubovaginal sling to the tension-free vaginal tape (TVT), which utilizes a synthetic polypropylene mesh, showed similar cure rates of 89% and 85% at a median follow-up of 12 months and 82.4% and 88.3% at a median follow-up of 36 months.[13, 14] Xenografts are costly and long-term data is still lacking. Table 3 lists the success and complications associated with various xenograft series.


Synthetic materials may have some advantages over biologic materials in terms of disease transmission, durability, tensile strength and availability.[10] The types of mesh are categorized based on pore size and fiber type as originally described for their use in abdominal wall hernia repairs.[15] While the advantages of using synthetics for vaginal surgery are evident, there are specific concerns regarding their use. This includes complications associated with the surgical procedure itself such as bleeding, hematoma formation, bladder and bowel injury, adhesions and obstructive ileus and complications from the material itself, including infection, urinary tract erosion and vaginal extrusion, sinus-tract formation and abscess formation. In addition, functional problems may arise including de novo urgency, urge incontinence and urinary.[16, 17] Table 4 lists the properties of the various synthetic materials available and their use in pelvic reconstruction.

Type I mesh

Type I meshes have a pore size of >75 mm, which is considered macroporous. They are composed of polypropylene monofilaments. The large pores allow access for leukocytes and macrophages, as well as ingrowth of fibroblasts and collagen and neovascularization. All this contributes to lower infection rates and promotes tissue incorporation into the host.

Type II mesh

Type II meshes have a pore size of <10 mm and include a multifilament expanded polytetrafluoroethylene mesh that only allows passage of histiocytes. There is therefore minimal incorporation into host tissue.

Type III mesh

Type III meshes are braided or multifilamentous with both macroporous and microporous components.

Type IV mesh

Type IV meshes have a submicronic pore size of <1 mm. Due to the sheet-like material that has poor tissue incorporation, this mesh is not often used in vaginal reconstruction. One exception is the polyethylene terephthalate fabric coated with silicone that has large pores with some submicronic components as well.[18]


For the purpose of this paper, we define ?erosion? as the presence of graft material in the lumen of the urinary tract and ?extrusion? as the presence of exposed graft material in the vagina.

Use of Type I mesh has demonstrated consistent success with similar rates of vaginal extrusion regardless of the technique for placement. Extrusion rates of 0.4-4.8% for TVT, 1-10.5% for SPARC and 0-6.7% for the transobturator Monarc have been reported.[19?23] A second transobturator sling that utilized a fusion-welded, thermally bonded, nonwoven, nonknitted polypropylene mesh (Ob-Tape?, Mentor Corp, Santa Barbara, CA) had significantly higher rates of extrusion ranging from 10-20%.[22, 24?26]

Comparable extrusion rates of 0-19% have been reported with sacrocolpopexy.[27, 28] New techniques (Apogee? and Perigee? (American Medical Systems, Minnetonka, MN) and Gynecare Prolift (Ethicon, Sommerville, NJ) have been developed that place polypropylene via the transobturator or transvaginal approach in the repair of anterior vaginal wall prolapse or vaginal vault prolapse. These techniques have shown promising early results, but intermediate and long-term data on rates of erosion and extrusion are yet to be presented.[29, 30]

Type II and III meshes are multifilamentous and therefore may allow bacteria to pass through and adhere to the graft and surrounding tissues. The small pore size does not allow passage of macrophages and leukocytes that may counter invading bacteria. It is because of these theoretical issues that Type II and III meshes are now rarely, if ever, used in pelvic floor reconstruction. Similarly, Type IV mesh has pore sizes too small to allow for fibroblast and leukocyte infiltration. They tend to induce pseudocapsules that may harbor infection. High rates of erosion, extrusion and other complications were noted and subsequently, Type IV mesh is rarely used in pelvic reconstructive surgery [Figure 1].[18] Table 5 lists reported extrusion and erosion rates for Type II, III and IV meshes.


As discussed previously, erosion or extrusion of the mesh is thought to be associated with the type of synthetic material used. However, patient factors such as poorly controlled diabetes mellitus, tobacco use, prior history of pelvic irradiation, repeat procedures and vaginal estrogen status may also contribute to poor wound healing and subsequent infection, erosion or extrusion. Some studies have suggested that concomitant hysterectomy may be an additional risk factor for extrusion of the sacrocolpopexy mesh.[28, 31] Surgical techniques such as excessive tension and unrecognized urethral or vesical injury may also contribute to higher rates of urinary tract erosion.[32] In addition, rolling of the tape during placement or vaginal suturing may produce a narrow band that can result in pressure necrosis and erosion.[20]

While repairs requiring greater dissection tend to have higher rates of complications, the placement of slings via the transvaginal versus transobturator route do not appear to play a significant role in the risk of erosion or extrusion in the literature available to date. Prospective randomized trials that compare sling placement techniques are currently in progress.


Patients who present with vaginal extrusion or urinary tract erosion may demonstrate a variety of symptoms, but they may be completely asymptomatic. Usual presenting symptoms include vaginal discharge, pain, dyspareunia, complaints of pain from the partner during intercourse, de novo stress urinary incontinence, urgency, hematuria or urinary tract infection or obstruction. In the experience of the authors, physical exam findings can usually identify extrusion of mesh components on pelvic exam. However, in cases of high suspicion without visualization of extruded mesh, exam under anesthesia may be necessary. It is of utmost importance to evaluate the urinary tract with cystourethroscopy to rule out erosion of material into the bladder or urethra, particularly if the patient presents with hematuria, recurrent urinary tract infections, irritative or obstructive symptoms, de novo urgency or bladder stones. In addition, we have noted from our own experience that over 30% of patients with vaginal extrusions required exam under anesthesia in order to adequately identify their extrusion sites, demonstrating the importance of a high index of suspicion for extrusion in those with clinical indications.

Management is based on the type of material, presence of infection and location of erosion or extrusion. From our own experience and from review of the literature, we have found that extrusion of Type I polypropylene mesh into the vagina may be managed conservatively with abstinence from sexual intercourse, local estrogen replacement therapy and antibiotics if associated infection is noted.[1, 33] The clinician should counsel the patient on the possible length of healing time (six to eight weeks) as some patients may prefer to proceed with definitive treatment rather than abstaining from intercourse for this length of time. Spontaneous healing rates from 29-100% have been reported with conservative management.[1, 33] One group described 26% cure rate with abstinence and local vaginal antiseptics for one month.[31] If these measures fail after six to eight weeks, then excision of the exposed mesh with adequate debridement of underlying and surrounding tissues will allow for improved wound healing.

Persistent infection or failure to epithelialize over a type I mesh warrants complete mesh excision [Figure 2]. The approach to removal of the mesh is often mandated by the location of the mesh. In general, pubovaginal, transobturator and transvaginal slings may be removed transvaginally and mesh placed for sacrocolpopexy should be removed abdominally. If complete removal of extruded mesh via the transvaginal route is not feasible, then transabdominal approach may be indicated for the retropubic slings. Transobturator slings, when associated with infection, may require exploration of the thigh in extreme cases.

Vaginal extrusion of type II, III and IV meshes generally requires complete excision due to higher risks of infection and poor healing rates. As with type I mesh, excision may be performed transvaginally if the exposed graft can be removed completely with adequate debridement and reapproximation of vaginal epithelium.[28] Ironically, the mesh types that induce pseudocapsule formation tend to be easier to remove than the type I meshes that allow extensive tissue regrowth.

Erosion into the urinary tract mandates complete removal of mesh regardless of mesh type [Figure 3]. Erosion of mesh into the bladder is rare and has traditionally been excised using a transvesical approach. Patients often present with hematuria, irritative voiding symptoms, urinary tract infection or retention. Cystoscopic resection of intravesical materials has been reported by Clemens et al. Of 14 patients that presented with complications following pubovaginal sling placement, two were noted to have erosion of mesh into the bladder and both were managed by endoscopic sling and/or suture removal. At one month follow-up, both patients' symptoms had resolved and both were continent.[34] One must use caution to remove as much mesh as possible when using a cystoscopic approach as the retained mesh may continue to erode and potentiate symptoms.

Urinary tract erosion of mesh that has been used in sacrocolpopexy may be addressed via laparoscopy or laparotomy with retroperitoneal graft excision.

Urethral erosions require urethrolysis with graft explantation. Urethral debridement followed by primary repair and multilayer closer with a Martius flap has been described by Amundsen et al. In a review of nine patients who presented with erosion of graft material into the urethra, three were from synthetic grafts that were excised and repaired as described. At a mean follow-up of 30 months, no urethral erosion or fistulas occurred, however, stress incontinence recurred in two of the three patients.[32] Clemens et al recommend urethral catheter drainage for two weeks with a pull-out cystourethrogram at the time of catheter removal.[34]

Newer techniques have been described in the treatment of mesh extrusion and erosion. Laparoscopic excision of mesh associated with bladder erosion and transvaginal endoscopic removal of mesh after sacrocolpopexy have been described.[35, 36] Pikaart et al report three patients with mesh noted in the bladder following pubovaginal placement of polypropylene mesh tape. All three underwent successful laparoscopic removal of the mesh and at six months follow-up, two of the three patients continued to have complaints of stress and urge incontinence without further mesh erosion into the bladder.[36] Romero et al describe three cases of vaginal mesh extrusion following abdominal sacrocolpopexy treated by transvaginal endoscopic excision of mesh. All three patients continued to have excellent support with adequate tissue healing at follow-up (six weeks to one year).[35] A technique of cystoscopic excision using a suprapubic port to excise the mesh has also been described by Rosenblatt et al. Two cases of bladder erosion following TVT were managed using cystoscopic excision combined with traction from laparoscopic grapsers through a small suprapubic port. One of the patients had follow-up office cystoscopy at six weeks that showed appropriate resolution with no persistent mesh in the bladder.[37]

Continence rates following mesh removal have been variable and often dependent on the amount of dissection performed and presence of infection. Reported rates of continence have ranged from 42-100%.[20, 34, 38]


Synthetic mesh has become a popular option for pelvic reconstruction. The potential complications of urinary tract erosion and vaginal extrusion are dependent on multiple factors including mesh type and patient tissue integrity. However, review of short and intermediate term data from the literature has shown that amongst synthetic grafts, type I mesh provides durable results with the fewest rates of erosion and extrusion. In addition, viable management options for vaginal extrusion include conservative approaches such as observation with or without local estrogen administration. While all materials, synthetic and biologic alike, have advantages and disadvantages in the treatment of pelvic floor disorders, synthetic materials may provide a safe and cost-effective alternative for pelvic reconstructive surgery.


Source of Support: Nil

Conflict of Interest: None declared.

1. Kobashi KC,Govier FE. Management of vaginal erosion of polypropylene mesh slingsJ UrolYear: 20031692242312771759
2. Leach GE,Dmochowski RR,Appell RA,Blaivas JG,Hadley HR,Luber KM,et al. Female Stress Urinary Incontinence Clinical Guidelines Panel summary report on surgical management of female stress urinary incontinence. The American Urological AssociationJ UrolYear: 1997158875809258103
3. Silva WA,Karram MM. Scientific basis for use of grafts during vaginal reconstructive proceduresCurr Opin Obstet GynecolYear: 2005175192916141767
4. Howden NS,Zyczynski HM,Moalli PA,Sagan ER,Meyn LA,Weber AM. Comparison of autologous rectus fascia and cadaveric fascia in pubovaginal sling continence outcomesAm J Obstet GynecolYear: 20061941444916579930
5. Wilson TS,Lemack GE,Zimmern PE. Management of intrinsic sphincteric deficiency in womenJ UrolYear: 20031691662912686804
6. Karlovsky ME,Thakre AA,Rastinehad A,Kushner L,Badlani GH. Biomaterials for pelvic floor reconstructionUrologyYear: 2005664697516140060
7. Amundsen CL,Visco AG,Ruiz H,Webster GD. Outcome in 104 pubovaginal slings using freeze-dried allograft fascia lata from a single tissue bankUrologyYear: 2000562811114556
8. Wright EJ,Iselin CE,Carr LK,Webster GD. Pubovaginal sling using cadaveric allograft fascia for the treatment of intrinsic sphincter deficiencyJ UrolYear: 1998160759629720541
9. Drake NL,Weidner AC,Webster GD,Amundsen CL. Patient characteristics and management of dermal allograft extrusionsInt Urogynecol J Pelvic Floor DysfunctYear: 200516375715647884
10. Amrute KV,Badlani GH. Female incontinence: A review of biomaterials and minimally invasive techniquesCurr Opin UrolYear: 20061654916479204
11. Jones JS,Rackley RR,Berglund R,Abdelmalak JB,DeOrco G,Vasavada SP. Porcine small intestinal submucosa as a percutaneous mid-urethral sling: 2-year resultsBJU IntYear: 200596103615963130
12. Gomelsky A,Rudy DC,Dmochowski RR. Porcine dermis interposition graft for repair of high grade anterior compartment defects with or without concomitant pelvic organ prolapse proceduresJ UrolYear: 20041711581415017225
13. Abdel-Fattah M,Barrington JW,Arunkalaivanan AS. Pelvicol pubovaginal sling versus tension-free vaginal tape for treatment of urodynamic stress incontinence: A prospective randomized three-year follow-up studyEur UrolYear: 2004466293515474274
14. Arunkalaivanan AS,Barrington JW. Randomized trial of porcine dermal sling (Pelvicol implant) vs. tension-free vaginal tape (TVT) in the surgical treatment of stress incontinence: A questionnaire-based studyInt Urogynecol J Pelvic Floor DysfunctYear: 200314172312601511
15. Amid PK,Shulman AG,Lichtenstein IL,Hakakha M. Biomaterials for abdominal wall hernia surgery and principles of their applicationsLangenbecks Arch ChirYear: 1994379168718052058
16. Baessler K,Maher CF. Mesh augmentation during pelvic-floor reconstructive surgery: Risks and benefitsCurr Opin Obstet GynecolYear: 200618560616932053
17. Bhargava S,Chapple CR. Rising awareness of the complications of synthetic slingsCurr Opin UrolYear: 2004143172115626872
18. Comiter CV,Colegrove PM. High rate of vaginal extrusion of silicone-coated polyester slingUrologyYear: 20046310667015183951
19. Abouassaly R,Steinberg JR,Lemieux M,Marois C,Gilchrist LI,Bourque JL,et al. Complications of tension-free vaginal tape surgery: A multi-institutional reviewBJU IntYear: 200494110315217442
20. Huang KH,Kung FT,Liang HM,Chang SY. Management of polypropylene mesh erosion after intravaginal midurethral sling operation for female stress urinary incontinenceInt Urogynecol J Pelvic Floor DysfunctYear: 2005164374015654499
21. Lord HE,Taylor JD,Finn JC,Tsokos N,Jeffery JT,Atherton MJ,et al. A randomized controlled equivalence trial of short-term complications and efficacy of tension-free vaginal tape and suprapubic urethral support sling for treating stress incontinenceBJU IntYear: 2006983677616879679
22. Yamada BS,Govier FE,Stefanovic KB,Kobashi KC. High rate of vaginal erosions associated with the mentor ObTapeJ UrolYear: 2006176651416813914
23. But I. Vaginal wall erosion after transobturator tape procedureInt Urogynecol J Pelvic Floor DysfunctYear: 200516506815645145
24. Domingo S,Alama P,Ruiz N,Perales A,Pellicer A. Diagnosis, management and prognosis of vaginal erosion after transobturator suburethral tape procedure using a nonwoven thermally bonded polypropylene meshJ UrolYear: 200517316273015821518
25. Siegel AL. Vaginal mesh extrusion associated with use of Mentor transobturator slingUrologyYear: 200566995916286110
26. Robert M,Murphy M,Birch C,Swaby C,Ross S. Five cases of tape erosion after transobturator surgery for urinary incontinenceObstet GynecolYear: 2006107472416449154
27. Nygaard IE,McCreery R,Brubaker L,Connolly A,Cundiff G,Weber AM,et al. Abdominal sacrocolpopexy: A comprehensive reviewObstet GynecolYear: 20041048052315458906
28. Begley JS,Kupferman SP,Kuznetsov DD,Kobashi KC,Govier FE,McGonigle KF,et al. Incidence and management of abdominal sacrocolpopexy mesh erosionsAm J Obstet GynecolYear: 200519219566215970860
29. Palma P,Riccetto C,Dambros M,Netto NR Jr. New trends in the transobturator management of cystocelesBJU IntYear: 2006972011016336363
30. Reisenauer C,Kirschniak A,Drews U,Wallwiener D. Transobturator vaginal tape inside-out. A minimally invasive treatment of stress urinary incontinence: Surgical procedure and anatomical conditionsEur J Obstet Gynecol Reprod BiolYear: 2006127123916384631
31. Collinet P,Belot F,Debodinance P,Ha Duc E,Lucot JP,Cosson M. Transvaginal mesh technique for pelvic organ prolapse repair: Mesh exposure management and risk factorsInt Urogynecol J Pelvic Floor DysfunctYear: 2006173152016228121
32. Amundsen CL,Flynn BJ,Webster GD. Urethral erosion after synthetic and nonsynthetic pubovaginal slings: Differences in management and continence outcomeJ UrolYear: 2003170134712796665
33. Achtari C,Hiscock R,O'Reilly BA,Schierlitz L,Dwyer PL. Risk factors for mesh erosion after transvaginal surgery using polypropylene (Atrium) or composite polypropylene/polyglactin 910 (Vypro II) meshInt Urogynecol J Pelvic Floor DysfunctYear: 2005163899415657636
34. Clemens JQ,DeLancey JO,Faerber GJ,Westney OL,Mcguire EJ. Urinary tract erosions after synthetic pubovaginal slings: Diagnosis and management strategyUrologyYear: 2000565899411018611
35. Romero AA,Amundsen CL,Weidner AC,Webster GD. Transvaginal endoscopic removal of eroded mesh after abdominal sacral colpopexyObstet GynecolYear: 20041031040215121600
36. Pikaart DP,Miklos JR,Moore RD. Laparoscopic removal of pubovaginal polypropylene tension-free tape slingsJSLSYear: 200610220516882424
37. Rosenblatt P,Pulliam S,Edwards R,Boyles SH. Suprapubically assisted operative cystoscopy in the management of intravesical TVT synthetic mesh segmentsInt Urogynecol J Pelvic Floor DysfunctYear: 2005165091115735894
38. Kobashi KC,Dmochowski R,Mee SL,Mostwin J,Nitti VW,Zimmern PE,et al. Erosion of woven polyester pubovaginal slingJ UrolYear: 19991622070210569572
39. Clemons JL,Myers DL,Aguilar VC,Arya LA. Vaginal paravaginal repair with an AlloDerm graftAm J Obstet GynecolYear: 20031891612914710083
40. Flynn MK,Webster GD,Amundsen CL. Abdominal sacral colpopexy with allograft fascia lata: One-year outcomesAm J Obstet GynecolYear: 2005192149650015902148
41. Frederick RW,Leach GE. Cadaveric prolapse repair with sling: Intermediate outcomes with 6 months to 5 years of follow-upJ UrolYear: 200517312293315758758
42. Rutner AB,Levine SR,Schmaelzle JF. Processed porcine small intestine submucosa as a graft material for pubovaginal slings: Durability and resultsUrologyYear: 200362805914624898
43. Giri SK,Hickey JP,Sil D,Mabadeje O,Shaikh FM,Narasimhulu G,et al. The long-term results of pubovaginal sling surgery using acellular cross-linked porcine dermis in the treatment of urodynamic stress incontinenceJ UrolYear: 200617517889316600762
44. Ho KL,Witte MN,Bird ET. 8-ply small intestinal submucosa tension-free sling: Spectrum of postoperative inflammationJ UrolYear: 20041712687114665891
45. Choe JM,Staskin DR. Gore-Tex patch sling: 7 years laterUrologyYear: 199954641610510921
46. Weinberger MW,Ostergard DR. Long-term clinical and urodynamic evaluation of the polytetrafluoroethylene suburethral sling for treatment of genuine stress incontinenceObstet GynecolYear: 1995869267784030
47. Yamada T,Kamata S,Nagahama K,Ichiyanagi N,Horiuchi S,Saitoh H. Polytetrafluoroethylene patch sling for type 2 or type 3 stress urinary incontinenceInt J UrolYear: 200186758011851767
48. Young SB,Howard AE,Baker SP. Mersilene mesh sling: Short- and long-term clinical and urodynamic outcomesAm J Obstet GynecolYear: 2001185324011483900
49. Kohli N,Walsh PM,Roat TW,Karram MM. Mesh erosion after abdominal sacrocolpopexyObstet GynecolYear: 19989299910049840566
50. Duckett JR,Constantine G. Complications of silicone sling insertion for stress urinary incontinenceJ UrolYear: 20001631835710799193
51. Siegel AL,Kim M,Goldstein M,Levey S,Ilbeigi P. High incidence of vaginal mesh extrusion using the intravaginal slingplasty slingJ UrolYear: 200517413081116145409


[Figure ID: F0001]
Figure 1 

Vaginal extrusion of type IV silicone mesh. Note the lack of tissue incorporation and granulation

[Figure ID: F0002]
Figure 2 

Vaginal extrusion of type I polypropylene mesh

[Figure ID: F0003]
Figure 3 

Bladder erosion of type I polypropylene mesh following vaginal vault suspension

[TableWrap ID: T0001] Table 1 

Biologic materials used in pelvic floor reconstruction

Biologic material Source Trade Name
Autologous graft Fascia lata
Rectus fascia
Allograft Human dermis Alloderm (LifeCell, Branchburg, NJ)
Bard? Dermal Allograft (CR Bard, Haverhill, Rl)
Axis? Tutoplast? Processed Dermis (Mentor Corp, Santa Barbara, CA)
Repliform? Tissue Regeneration Matrix (Boston scientific, Batick, MA)
Human fascia lata Suspend? Tutoplast? Processed Fascia Lata (Mentor Corp, Santa Barbara, CA)
FasLata? Allograft (CR Bard, Haverhill, Rl)
Human dura mater Lyodura (B Braun Melsungen AG, Germany)
Xenograft Porcine dermis Pelvicol?, Pelvilace? (CR Bard, Haverhill, Rl)
InteXen (American medical systems, Minnetonka, MN)
Bovine dermis Xenform? Soft Tissue Repair Matrix (Boston Scientific, Natick, MA)
Porcine small intestine submucosa Surgisis?, Stratasis? (Cook urological, Spencer, IN)

[TableWrap ID: T0002] Table 2 

Erosion/extrusion rates for various al log rafts[9, 39?41]

Graft Study No. patients (repair) No. Erosion/extrusion (%) Description of erosion/extrusion Management
Dermal allograft Clemons et al (2003) 33 (anterior) 0 (0%)
Drake et al (2005) 69 (21 anterior, 45 posterior, 3 both) 7 (10.9%) Vaginal extrusion (3 anteriorly, 4 posteriorly) Conservative with topical estrogen cream. All experienced spontaneous resolution
Allograft fascia lata Flynn et al (2005) 24 (sacrocolpopexy) 0 (0%)
Frederick et al (2005) 251 (cadaveric prolapse repair with 22 (9%) sling (CaPS) Intravaginal granulation tissue caused by extrusion of panacryl sutures used for the cystocele repair and vault suspension Patients treated by suture removal and fulguration of the granulation tissue with silver nitrate

[TableWrap ID: T0003] Table 3 

Success and complication rates of various xenografts[11, 12, 42?44]

Graft Study No. patients (repair) Cure rate Complications
Porcine dermis Gomelsky et al (2003) 70 (cystocele) 91% 12.9% recurrent cystocele at a mean follow-up of 24 months
Giri et al (2006) 48 (pubovaginal sling) 54% 1 urethrolysis, 1 suprapubic wound infection, 1 urinary tract infection, 2 vaginal bleeding, 2 pain during intercourse, 2 deep pelvic pain
Porcine small intestinal submucosa Jones et al (2005) 34 (mid-urethral sling) 79% 9% developed suprapubic inflammation
Rutner et al (2003) 152 (pubovaginal sling with bone anchors) 93.4% 4.6% recurrent stress urinary incontinence
Ho et al (2003) 10 (pubourethral sling) 90% 60% - six patients presented with postoperative inflammatory reactions

[TableWrap ID: T0004] Table 4 

Properties of synthetic materials

Mesh type Pore size Structure Synthetic material Trade name Use in pelvic floor reconstruction
I >75 ?m Monofilament Polypropylene Uretex? Self-Anchoring Urethral Support System (CR Bard, Haverhill, Rl) Transvaginal
Uretex? TO Trans-Obturator Urethral Support System (CR Bard, Haverhill, Rl) Transobturator
Gynecare TVT (Ethicon/Johnson and Johnson, Somerville, NJ) Transvaginal
Somerville, NJ) Gynecare TVT-O (Ethicon/Johnson and Johnson, transobturator Inside-out
SPARC? Self-fixating Sling System (American Medical Systems, Minnetonka, MN) Suprapubic
In-Fast? Ultra Transvaginal Sling (American Medical Systems, Minnetonka, MN) Transvaginal with bone anchors
Monarc? Subfascial Hammock (American Medical Systems, Minnetonka, MN) Transobturator
Lynx? Suprapubic Mid-Urethral Sling System (Boston Scientific, Natick, MA) Suprapubic
Advantage? Transvaginal Mid-Urethral Slinj System (Boston Scientific, Natick, MA) Transvaginal
Obtryx? Transobturator Mid-Urethrai Sling System (Boston Scientific, Natick, MA) Transobturator
T-Sling (Caldera Medical, Augurr. H ms, CA) Suprapubic, transvaginal or transobturator approach
Aris? Trans-obturator Tape (Mentor Corp, Santa Natick, CA) Transobturator
Perigee? (American Medial Systems. Minnetonka, MN) Transobturator anterior prolapse repair
Apogee? (American Medial Systems, Minnetonkc, MN) Transvaginal vaginal vault prolapse repair
Gynecare Prolift (Ethicon/Johnson and Johnson, Somerville, NJ) Transvaginal vaginal vault prolapse repair
Prolene (Ethicon/joimson and Johnson, Somerville, NJ) Variable use
Atrium (Atiiun Medical, Hudson, NH) Variable use
Marlex? (CR Bard, Cranston, RI) Variable use
II < 10 ?m Multifilament Expanded PTFF Gore-Tex? (W. L. Gore, Flagstaff, AZ) Variable use
III < 10 ?m (macroporous with microporous components) Multifilament PTFE Teflon (CR Bard, Haverhill, RI) Sacrocolpopexy, suprapubic, transvaginal
Polyethylene terepthalate Mersilene (Ethicon/Johnson and Johnson, Somerville, NJ) Sacrocolpopexy, suprapubic, transvaginal
Polypropylene IVS Tunneller? (Tyco Healthcare, Norwalk, CT) Transvaginal
Obturator IVS Tunneller? (Tyco Healthcare, Norwalk, CT) Transobturator
Woven polyester ProteGen (Boston Scientific, Natick, MA) Recalled 1999
IV <1 ?m Multifilament Silicone-coated polyester Intemesh (American Medical Systems, Minnetonka, MN) Sacrocolpopexy, suprapubic, transvaginal
Dura mater substitute PRECLUDE? MVP? Dura Substitute (W. L. Gore, Flagstaff, AZ)
Expanded PTFE, pericardial membrane substitute PRECLUDE? Pericardial Membrane (W. L. Gore, Flagstaff, AZ)

Adapted from Karlovsky et al 2005.[6]

[TableWrap ID: T0005] Table 5 

Erosion/extrusion rates for various synthetic meshes[27, 28, 38, 45?51]

Mesh type Material Trade name Study No. patients No. erosion/extrusion (%) Description of complication
II Expanded PTFE Gore-Tex? W. L. Gore, Flagstaff, AZ) Choe et al (1999) 90 5 (5.6) Vaginal granulation requiring removal of mesh
Begley et al (2005) 33 3 (9) Vaginal extrusion
Weinberger et al (1995) 98 25 (26) Ten vaginal extrusions, ten granulation tissue, five sinus tracts
III PTFE Teflon (CR Bard, Haverhill, RI) Yamada et al (2001) 137 1 (0.7) Urethral erosion
Nygaard et al (2004) 119 6 (5.5) Mesh erosion or extrusion following sacrocolpopexy
Polyethylene terephthalate Mersilene (Ethicon/Johnson and Johnson, Somerville, NJ) Young et al (2001) 176 8 (4) Seven vaginal and one inguinal sling extrusion
Kohli et al (1998) 10 2 (20) Vaginal extrusion
Polypropylene IVS Tunneller? (Tyco Healthcare, Norwalk, CT) Siegel et al (2005) 35 6 (17%) Vaginal extrusion
Woven polyester ProteGen (Boston Scientific, Natick, MA) - recalled 1999 Kobashi et al (1999) N/A 34 vaginal extrusion, infection or pain all requiring removal
IV Silicone-coated polyester Intemesh (American Medical Systems, Begley et al (2005) 21 4 (19) Vaginal extrusion
Minnetonka, MN) Duckett et al (2000) 7 5 (71) vaginal extrusion and sinus formation

Article Categories:
  • Symposium

Keywords: Biomaterials, erosion, management, synthetic mesh.

Previous Document:  Surgery for stress urinary incontinence in women: A 2006 review.
Next Document:  Conservative management of voiding dysfunction.