Document Detail

Comparison of the clinical features of apical hypertrophic cardiomyopathy versus asymmetric septal hypertrophy in Korea.
Jump to Full Text
MedLine Citation:
PMID:  16134764     Owner:  NLM     Status:  MEDLINE    
BACKGROUND: We sought to test whether patients with apical hypertrophic cardiomyopathy (APH) have different clinical features compared to those with typical asymmetric septal hypertrophy (ASH).
METHODS: Among 32,534 patients who underwent routine echocardiography at Asan Medical Center from January 2000 to December 2001, 305 patients (0.9%), who were finally diagnosed with hypertrophic cardiomyopathy (HCMP), were evaluated. The type of HCMP was classified according to the echocardiographic findings.
RESULTS: ASH was the most frequent type (n=160, 53%, group I), and APH was the second most frequent (n=91, 30%, group II). Mean age (60.8 +/- 10 vs. 48.2 +/- 14 years, p<0.001) and prevalence of hypertension (32% vs. 19%, p=0.022) were significantly higher in group II than in group I. Family history of HCMP (4.4% vs. 0% p=0.043) and sudden cardiac death (8.8% vs. 1.1% p=0.014) was more prevalent in group I. During the follow-up period of 32.0 +/- 37.2 months, cardiac events occurred at a significantly higher rate in group I (25.5% vs. 8.8%, p=0.003).
CONCLUSION: APH comprises a significant proportion of HCMP in Korea and patients with APH show different clinical features compared to those with ASH.
Hyun Suk Yang; Jae-Kwan Song; Jong-Min Song; Duk-Hyun Kang; Cheol Whan Lee; Myeong-Ki Hong; Jae-Joong Kim; Seong-Wook Park; Seung-Jung Park
Related Documents :
16412854 - Transcatheter closure of perimembranous ventricular septal defects using the new amplat...
9869974 - Implantable cardioverter-defibrillator therapy: influence of left ventricular function ...
15093884 - Analysis of mortality events in the multicenter automatic defibrillator implantation tr...
10856854 - Extracardiac conduit fontan procedure: early and intermediate results.
6395274 - Single-dose regimen of cefonicid for the treatment of uncomplicated infections of the l...
14745214 - Stereotactic ventrooralis thalamotomy for task-specific focal hand dystonia (writer's c...
Publication Detail:
Type:  Comparative Study; Journal Article    
Journal Detail:
Title:  The Korean journal of internal medicine     Volume:  20     ISSN:  1226-3303     ISO Abbreviation:  Korean J. Intern. Med.     Publication Date:  2005 Jun 
Date Detail:
Created Date:  2005-09-01     Completed Date:  2005-09-29     Revised Date:  2014-06-05    
Medline Journal Info:
Nlm Unique ID:  8712418     Medline TA:  Korean J Intern Med     Country:  Korea (South)    
Other Details:
Languages:  eng     Pagination:  111-5     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Cardiomyopathy, Hypertrophic / epidemiology,  ultrasonography*
Follow-Up Studies
Heart Septum* / ultrasonography
Heart Ventricles* / ultrasonography
Korea / epidemiology
Middle Aged
Retrospective Studies

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Korean J Intern Med
Journal ID (iso-abbrev): Korean J. Intern. Med
Journal ID (publisher-id): KJIM
ISSN: 1226-3303
ISSN: 2005-6648
Publisher: The Korean Association of Internal Medicine
Article Information
Download PDF
Copyright © 2005 The Korean Association of Internal Medicine
Received Day: 09 Month: 8 Year: 2004
Accepted Day: 03 Month: 12 Year: 2004
Print publication date: Month: 6 Year: 2005
Electronic publication date: Day: 30 Month: 6 Year: 2005
Volume: 20 Issue: 2
First Page: 111 Last Page: 115
PubMed Id: 16134764
ID: 3891378
DOI: 10.3904/kjim.2005.20.2.111

Comparison of the Clinical Features of Apical Hypertrophic Cardiomyopathy Versus Asymmetric Septal Hypertrophy in Korea
Hyun Suk Yang, M.D.A1
Jae-Kwan Song, M.D.A1
Jong-Min Song, M.D.A1
Duk-Hyun Kang, M.D.A1
Cheol Whan Lee, M.D.A1
Myeong-Ki Hong, M.D.A1
Jae-Joong Kim, M.D.A1
Seong-Wook Park, M.D.A1
Seung-Jung Park, M.D.A1
Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
Correspondence: Correspondence to: Jae-Kwan Song, M.D., Cardiology, Asan Medical Center, University of Ulsan, College of Medicine, 388-1, Poongnap-dong, Songpa-ku, Seoul, 138-736, Korea. Tel: 82-2-3010-3150, Fax: 82-2-486-5918,


Hypertrophic cardiomyopathy (HCMP) is a complex, primary, and inherited cardiac muscle disorder characterized by a wide spectrum of morphological manifestations, natural history, and prognosis1-3). Apical hypertrophic cardiomyopathy (APH) is a relatively rare form of HCMP, which was initially described by Japanese investigators in 1976 as a form of non-obstructive hypertrophy predominantly involving the apex of the left ventricle, associated with giant precordial negative T-waves and a typical ace-of-spades configuration of the left ventriculogram4,5). APH is reported to be relatively common in the Asian population6-8) and racial difference in morphological and clinical features of HCMP remains an interesting subject. This study was undertaken to investigate the clinical profiles of HCM in a relatively large Korean population and to test whether patients with APH have different clinical features compared to those with typical asymmetric septal hypertrophy (ASH).


Among 32,534 patients who underwent routine echocardiography at Asan Medical Center from January 2000 to December 2001, 305 patients (0.9%) were found to have final diagnoses of HCMP. Medical records, including the echocardiography reports of these 305 patients, were retrospectively reviewed; we included not only newly diagnosed patients, but also those who had already been diagnosed.

Two-dimensional echocardiograms were obtained using commercially available machines (HP SONOS 2500 & 5500, Andover, United States). Besides routine measurements of the left atrial and ventricular cavity, left ventricular wall thickness at the end of diastole was obtained. According to the site of maximum wall thickness, we classified HCMP into five types: (1) ASH (interventricular septal thickness ≥15 mm and a ratio of interventricular septum to left ventricular posterior wall ≥1.3); (2) APH (apical wall thickness ≥15 mm and a ratio of apical to left ventricular posterior wall ≥1.3, Figure 1A and 1B); (3) mixed type of ASH and APH; (4) mid-ventricular type (hypertrophy confined to the mid-ventricular level with flow acceleration); and (5) diffuse type (hypertrophy involving the entire left ventricle). The initial electrocardiogram at the diagnosis was analyzed for the presence of left ventricular hypertrophy using the Sokolow-Lyon criteria. It was also analyzed for the presence of T-wave inversion. 'Giant' T-wave negativity was defined as a voltage of a negative T-wave ≥1 mV in any of the leads (Figure 1C)9).

Clinical follow-up and cardiac events

Late follow-up was obtained by direct telephone contact with patients or by clinic chart review of all patients. Cardiac death was defined as death of cardiovascular origin, such as myocardial infarction, intractable arrhythmia, congestive heart failure, or stroke. Cardiac events included: 1) new onset atrial fibrillation or flutter; 2) sustained ventricular tachycardia or ventricular fibrillation; 3) hospital admission due to chest pain or congestive heart failure; 4) mitral valve replacement due to severe mitral regurgitation; 5) stroke or transient ischemic attack.


Data were expressed as mean±SD for continuous variables, and as frequencies for the categorical variables. Differences between APH and ASH were analyzed by the unpaired Student t-test for continuous variables and by the chi-square test for categorical variables. Cardiovascular event-free survival was calculated and compared using the Kaplan-Meier method and log-rank test. A p-value of <0.05 was considered statistically significant.

Types of hypertrophic cardiomyopathy: ASH vs. APH

According to the echocardiographic findings, typical ASH was present in 160 patients (52.5%), APH in 91 patients (29.8%), a mixed type of ASH and APH in 40 patients (13.1%), and mid-ventricular type in 2 patients (0.7%). The other 12 patients showed diffuse type hypertrophy. Comparison of the clinical features between the two major groups (ASH versus APH) is summarized in Table 1. Mean age at diagnosis (60.8±10 vs. 48.2±14 years, p<0.001) and prevalence of past medical history of hypertension (29/91 vs. 31/160, p=0.022) and stroke (11/91 vs. 2/160, p<0.001) were significantly higher in the APH group than in the ASH group. Family history of HCMP (4.4% vs. 0% p=0.043) and sudden cardiac death (8.8% vs. 1.1% p=0.014) were more prevalent in the ASH group. Chest pain and dyspnea were the two most common symptoms at initial presentation in both groups; however, patients with functional class ≥3 at the presentation were more common in the ASH group (17.1% vs.7.9%, p=0.043).

Although the prevalence of atrial fibrillation was the same at presentation (10.0% vs. 12.2%, p=NS), the frequency of electrocardiographic signs of left ventricular hypertrophy (92.3% vs.53.1%, p<0.001), T-wave inversion (96.7% vs.60.0%, p<0.001), and giant negative T-waves (48.4% vs.5.0%, p<0.001) were significantly higher in the APH group than in the ASH group. In the ASH group, 15 patients (9.4%) showed normal electrocardiographic findings.

The mean ratio of septal/posterior wall thickness was 1.96± 0.43 (range 1.30-3.44) in the ASH group and the ratio of apical/posterior wall thickness was 1.72±0.31 (range 1.30-2.75) in the APH group. Systolic anterior motion of the anterior mitral valve with resting left ventricular outflow tract obstruction was noted in 54 of 160 ASH, but none in APH.

These 251 patients were followed for 32.0±37.2 months. Nonsurgical septal ablation or antiarrhythmic therapy using implantable cardiac defibrillator was exclusively applied in the ASH group and beta-blockers were also more frequently prescribed in the ASH group (63.1% vs. 45.1%, p=0.016). During follow-up, the number of patients with cardiovascular events was higher in the ASH group than in the APH group (25.5% vs. 8.8%, p=0.003, Table 2). The five-year event-free survival rate was 72.0±5.6% and 91.3%±3.2% in the ASH and the APH group, respectively (p=0.045) (Figure 2).


In the present study, we have shown that patients with APH comprise a significant proportion of HCMP in Korea and show different clinical features compared to those with ASH; patients with APH had higher mean age, less frequent family history of sudden cardiac death, higher prevalence of hypertension, and better event-free survival rates than those with typical ASH. In the literature, there are many reports showing marked racial differences in the prevalence of APH; APH is considered to be common in Japan with a prevalence of up to 30%, whereas the prevalence of APH outside of Japan is reported to be about 2% of HCMP in a large series of studies10-12). Recently, Kitaoka et al.13) directly compared cohorts of HCMP from Japan (n=100) and those from the United States (n=361); the mean age of patients with HCMP was not significantly different between the groups (51±13 vs. 49±18 years), but the prevalence of APH was significantly higher in the Japanese cohort than in the American cohort (15% vs 3%, p=0.01). The baseline characteristics of Korean patients with HCMP were quite similar to those of Japanese patients (Table 3); they showed similar mean ages and similar prevalence of male gender, giant T-wave inversion, and resting left ventricular outflow tract obstruction. Further study is necessary to determine whether the higher prevalence of APH is universal in all Asian countries.

To date, with the exception of some reports describing the characteristics of APH as a unique subtype of HCMP12,15-18), there has been no direct comparison of APH with typical ASH in such a large scale. The mean age and the prevalence of medical history of hypertension were significantly higher in the APH group, whereas family history of HCMP or sudden cardiac death, and dyspnea of the New York Heart Association functional class ≥3 at presentation were more prevalent in the ASH group. The prevalence of giant negative T-waves was one of the marked features of APH (48% vs. 5% p<0.001); localized apical hypertrophy may lead to a recovery process of lengthened duration between the apex and the other areas, resulting in the genesis of a giant T-wave inversion19). Three independent factors associated with the giant negative T-wave were thickness of apex (OR 1.33, 95% confidence interval of 1.214-1.463), age at diagnosis (OR 1.04, 95% CI 1.012-10.70), and male sex (OR 2.64, 95% CI 1.237-5.652).

The natural history of HCMP has been described in several large studies; reported annual mortality is 2 to 6% in tertiary care centers20,21) or 0.7% in a relatively unselected population base study14,22). In this study, the total annual mortality of patients with HCMP was < 1%. Total cardiovascular events occurred more commonly in patients with ASH than in those with APH, and the cardiac event-free survival rate was better in the APH group. Recently, the long-term outcome of North American patients with APH was investigated and it was concluded that they have a benign prognosis in terms of cardiovascular mortality23). Despite important risk factors of coronary artery disease in our patients with APH, such as old age and high prevalence of hypertension, only a few cardiovascular events occurred, emphasizing the benign course of APH. This finding is likely to influence medical fields to focus on counseling and management of patients with APH.

This study is a retrospective analysis of the database of a single, tertiary referral center with relatively short follow-up duration. Thus, the real prevalence of APH should be reassessed in a large population study. However, considering that patients in a tertiary referral center tend to be characterized by severe symptoms or a malignant family history, we believe that our data support a relatively higher prevalence of APH in Korea compared to other countries. Because of the short follow-up duration, we evaluated cardiovascular events rather than cardiac mortality, and demonstrated better cardiac event-free survival rate in patients with APH. Although most of the cardiac events in the APH group occurred within 18 months of diagnosis, longer follow-up is necessary to confirm the relatively benign clinical course of the APH group.

In conclusion, APH comprises 30% of HCMP in Korea, similar to Japan, and patients with APH show higher mean age, less frequent family history of sudden cardiac death, higher prevalence of hypertension, and better event-free survival rate than those patients with typical ASH. Although we have shown better prognoses for patients with APH compared to those with ASH, the incidence of severe clinical events, such as cardiac death or development of heart failure or stroke, was similar between groups. Moreover, we have failed to demonstrate identification of clinical variables, including electrocardiographic changes, which are useful for predicting the prognosis of these patients. A multi-center longitudinal clinical study is necessary to determine the prognostic factors in patients with APH.

1. Roberts R,Sigwart U. New concepts in hypertrophic cardiomyopathies, part ICirculationYear: 20011042113211611673355
2. Maron BJ. Hypertrophic cardiomyopathyJAMAYear: 20022871308132011886323
3. McKenna WJ,Behr ER. Hypertrophic cardiomyopathy: management, risk stratification, and prevention of sudden deathHeartYear: 20028716917611796562
4. Sakamoto T,Tei C,Murayama M,Ichiyasu H,Hada Y. Giant T wave inversion as a manifestation of asymmetrical apical hypertrophy (AAH) of the left ventricle: echocardiographic and ultrasono-cardiotomographic studyJpn Heart JYear: 197617611629136532
5. Yamaguchi H,Ishimura T,Nishiyama S,Nagasaki F,Nakanishi S,Takatsu F,Nishijo T,Umeda T,Machii K. Hypertrophic nonobstructive cardiomyopathy with giant negative T waves (apical hypertrophy): ventriculographic and echocardiographic features in 30 patientsAm J CardiolYear: 197944401412573056
6. Koga Y,Itaya K,Toshima H. Prognosis in hypertrophic cardiomyopathyAm Heart JYear: 19841083513596540514
7. Park YB,Lee WS,Kim DK,Choi YS,Seo JD,Lee YW. Clinical and morphological features of hypertrophic cardiomyopathy in Korean patientsJ Korean Med SciYear: 198941631692639692
8. Matsumori A,Furukawa Y,Hagesawa K,Sato Y,Nakgawa H,Morikawa Y,Miura K,Ohno Y,Tamakoshi A,Inaba Y,Sasayama S. Epidemiologic and clinical characteristics of cardiomyopathies in Japan: results from nationwide surveysCirc JYear: 20026632333611954944
9. Alfonso F,Nihoyannopoulos P,Stewart J,Dickie S,Lemery R,Mckenna WJ. Clinical significance of giant negative T waves in hypertrophic cardiomyopathyJ Am Coll CardiolYear: 1990159659712312983
10. Maron BJ,Schiffers A,Klues HG. Comparison of phenotypic expression of hypertrophic cardiomyopathy in patients from the United States and GermanyAm J CardiolYear: 19998362662710073880
11. Chikamori T,Doi YL,Akizawa M,Yonezawa Y,Ozawa T,McKenna WJ. Comparison of clinical, morphological, and prognostic features in hypertrophic cardiomyopathy between Japanese and western patientsClin CardiolYear: 19921583383710969627
12. Louie EK,Maron BJ. Apical hypertrophic cardiomyopathy: clinical and two-dimensional echocardiographic assessmentAnn Intern MedYear: 19871066636703565964
13. Kitaoka H,Doi Y,Casey SA,Hitomi N,Furuno T,Maron BJ. Comparison of the prevalence of apical hypertrophic cardiomyopathy in Japan and the United StatesAm J CardiolYear: 2003921183118614609593
14. Cannan CR,Reeder GS,Bailey KR,Melton LJ 3rd,Gersh BJ. Natural history of hypertrophic cardiomyopathy: a population-based study, 1976 through 1990CirculationYear: 199592248824957586349
15. Keren G,Belhassen B,Sherez J,Miller HI,Megidish R,Berenfeld D,Laniado S. Apical hypertrophic cardiomyopathy: evaluation by noninvasive and invasive techniques in 23 patientsCirculationYear: 19857145564038370
16. Rovelli EG,Parenti F,Devizzi S. Apical hypertrophic cardiomyopathy of "Japanese type" in a Western European personAm J CardiolYear: 1986573583593946234
17. Vacek JL,Davis WR,Bellinger RL,McKiernan TL. Apical hypertrophic cardiomyopathy in American patientsAm Heart JYear: 1984108150115066542305
18. Webb JG,Sasson Z,Rakowski H,Liu P,Wigle ED. Apical hypertrophic cardiomyopathy: clinical follow-up and diagnostic correlatesJ Am Coll CardiolYear: 19901583902295747
19. Sakamoto T. Apical hypertrophic cardiomyopathy (apical hypertrophy): an overviewJ CardiolYear: 200137Suppl 116117811433822
20. Hardarson T,de la Calzada CS,Curiel R,Goodwin JF. Prognosis and mortality of hypertrophic obstructive cardiomyopathyLancetYear: 19732146214674129311
21. McKenna W,Deanfield J,Faruqui A,England D,Oakley C,Goodwin J. Prognosis in hypertrophic cardiomyopathy: role of age and clinical, electrocardiographic and hemodynamic featuresAm J CardiolYear: 1981475325387193406
22. Maron BJ,Olivotto I,Spirito P,Casey SA,Bellone P,Gohman TE,Graham KJ,Burton DA,Cecchi F. Epidemiology of hypertrophic cardiomyopathy-related death: revisited in a large non-referral-based patients populationCirculationYear: 200010285886410952953
23. Eriksson MJ,Sonnenberg B,Woo A,Rakowski P,Parker TG,Wigle ED,Rakowski H. Long-term outcome in patients with apical hypertrophic cardiomyopathyJ Am Coll CardiolYear: 20023963864511849863
24. Kawasaki T,Azuma A,Asada S,Hadase M,Kamitani T,Kawasaki S,Kuribayashi T,Sugihara H. Heart rate turbulence and clinical prognosis in hypertrophic cardiomyopathy and myocardial infarctionCirc JYear: 20036760160412845183

Article Categories:
  • Original Article

Keywords: Hypertrophic cardiomyopathy, Prognosis, Echocardiography.

Previous Document:  Pre-operative nutritional status as a morbidity factor in surgical patients
Next Document:  High frequency of microsatellite instability in intestinal-type gastric cancer in Korean patients.