Document Detail

Community Structures and Distribution of Anaerobic Ammonium Oxidizing and nirS-Encoding Nitrite-Reducing Bacteria in Surface Sediments of the South China Sea.
MedLine Citation:
PMID:  23354291     Owner:  NLM     Status:  Publisher    
Anaerobic ammonium oxidation (anammox) and denitrification are two important processes responsible for nitrogen loss; monitoring of microbial communities carrying out these two processes offers a unique opportunity to understand the microbial nitrogen cycle. The aim of the current study was to characterize community structures and distribution of anammox and nirS-encoding nitrite-reducing bacteria in surface sediments of the northern South China Sea (SCS). The consistent phylogenetic results of three biomarkers of anammox bacteria, including 16S rRNA, hzo, and Scalindua-nirS genes, showed that Scalindua-like bacteria were the only anammox group presenting in surface sediments of the SCS. However, a relatively high micro-diversity was found within this group, including several SCS habitat-specific phylotypes, Candidatus "Scalindua zhenghei". Comparing to 16S rRNA gene, hzo and Scalindua-nirS genes provided a relatively higher resolution to elucidate anammox bacteria. For the nirS-encoding nitrite-reducing bacteria, the detected nirS gene sequences were closely related to various marine nirS denitrifiers, especially those which originated from coastal and estuarine sediments with a much higher diversity than anammox bacteria. Anammox bacterial communities shifted along with the seawater depth, while nirS-encoding nitrite-reducing bacteria did not. Although nirS-encoding nitrite-reducing bacteria have a much higher abundance and diversity than anammox bacteria, they showed similar abundance variation patterns in research sites, suggesting the two microbial groups might be affected by the similar environmental factors. The significant correlations among the abundance of the two microbial groups with the molar ratio of NH(4) (+) to (NO(2) (-) + NO(3) (-)), pH, and organic matters of sediments strongly supported this hypothesis.
Meng Li; Yiguo Hong; Huiluo Cao; Ji-Dong Gu
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-29
Journal Detail:
Title:  Microbial ecology     Volume:  -     ISSN:  1432-184X     ISO Abbreviation:  Microb. Ecol.     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-1-28     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  7500663     Medline TA:  Microb Ecol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Isolation of Normal and Cancer-associated Fibroblasts from Fresh Tissues by Fluorescence Activated C...
Next Document:  Molecular Ecology Techniques Reveal Both Spatial and Temporal Variations in the Diversity of Archaea...