Document Detail


Combined ATRP and 'Click' Chemistry for Designing Long-circulating Tumor-targeting Superparamagnetic Iron Oxide Nanoparticles.
MedLine Citation:
PMID:  22121942     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Important issues in the design of superparamagnetic iron oxide nanoparticles (SPIONs) for cancer diagnosis include stability under physiological conditions and specificity in targeting the cancer cells. In the present study, atom transfer radical polymerization (ATRP) was used to graft SPIONs with poly(glycidyl methacrylate-co-poly(ethylene glycol) methyl ether methacrylate) (SPIONs-P(GMA-co-PEGMA)). The PEGMA in the copolymer chain confers high stability to the nanoparticles in aqueous medium, and prevents recognition by macrophages with the aim of prolonging their in vivo circulation time. The GMA groups were used for conjugating the cancer targeting ligand, folic acid (FA), via 'click' chemistry. Using this method, the amount of FA conjugated to the nanoparticles (SPIONs-P(GMA-co-PEGMA)-FA) can be readily controlled. The specificity of cellular uptake of the nanoparticles by three different cell lines was investigated. The cellular iron uptake by KB cells (human epidermoid carcinoma) after 24 h of incubation is about thirteen and five times higher than those by 3T3 fibroblasts and macrophages, respectively. No significant cytotoxicity was observed with these three types of cells. The high targeting efficiency and biocompatibility of these nanoparticles are promising features for in vivo specific targeting and detection of tumor cells which overexpress the folate receptor.
Authors:
Chao Huang; Koon Gee Neoh; En-Tang Kang
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2011-11-28
Journal Detail:
Title:  Langmuir : the ACS journal of surfaces and colloids     Volume:  -     ISSN:  1520-5827     ISO Abbreviation:  -     Publication Date:  2011 Nov 
Date Detail:
Created Date:  2011-11-29     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9882736     Medline TA:  Langmuir     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Mothers report more child-rearing disagreements following early brain injury than do fathers.
Next Document:  Surface Functionalized MWNTs with Emeraldine Base: Preparation and Improving Dielectric Properties o...