Document Detail

Combination of artificial neural network technique and linear free energy relationship parameters in the prediction of gradient retention times in liquid chromatography.
MedLine Citation:
PMID:  18395736     Owner:  NLM     Status:  MEDLINE    
In this work multiple linear regression (MLR) and artificial neural network (ANN) were used to predict the gradient retention times of diverse sets of organic compounds in four separate data sets. Descriptors which were used as inputs of these models are five linear free energy relationship (LFER) solute parameters including E, S, A, B and V. In the first step eight separate multiple linear regression and artificial neural network models were used to predict the gradient retention time for each gradient condition separately. Results obtained in this step reveal that there are significant relations between LFER parameters and gradient retention times of solutes in liquid chromatography. Then MLR and ANN were applied to develop more general models in which several different gradient elution conditions were used. The performances of these models are compared in terms of their standard errors and also correlation analysis. The results obtained reveal that although there are no significant differences between ANN and MLR in separate modeling of the gradient retention times, ANN has a significant superiority over MLR models in developing the general models for various gradient elution conditions. The results of sensitivity analysis on ANN models indicate that the order of importance for input terms in separate ANN models is Vx>B>S>E>A and in the case of combined ANN model is Vx>B>tg>S>E>A, which are in agreement with the order of percentage of significance terms that obtained from the MLR models.
M H Fatemi; M H Abraham; C F Poole
Related Documents :
14556686 - Artificial fish schools: collective effects of school size, body size, and body form.
19925616 - Internal validation of an artificial neural network for prostate biopsy outcome.
17281746 - Prediction of scoliosis progression in time series using a hybrid learning technique.
18309366 - The implicit function as squashing time model: a novel parallel nonlinear eeg analysis ...
18489766 - A model-based time-reversal of left ventricular motion improves cardiac motion analysis...
17489256 - Linking occurrence and fitness to persistence: habitat-based approach for endangered gr...
Publication Detail:
Type:  Journal Article     Date:  2008-03-13
Journal Detail:
Title:  Journal of chromatography. A     Volume:  1190     ISSN:  0021-9673     ISO Abbreviation:  J Chromatogr A     Publication Date:  2008 May 
Date Detail:
Created Date:  2008-04-21     Completed Date:  2008-08-13     Revised Date:  2009-01-15    
Medline Journal Info:
Nlm Unique ID:  9318488     Medline TA:  J Chromatogr A     Country:  Netherlands    
Other Details:
Languages:  eng     Pagination:  241-52     Citation Subset:  IM    
Department of Chemistry, Mazandaran University, Babolsar, Iran. <>
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Chromatography, Liquid / methods*
Neural Networks (Computer)*

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Novel approach to microwave-assisted extraction and micro-solid-phase extraction from soil using gra...
Next Document:  Determination of oxalate in black liquor by headspace gas chromatography.