Document Detail

Codon optimization of xylA gene for recombinant glucose isomerase production in Pichia pastoris and fed-batch feeding strategies to fine-tune bioreactor performance.
MedLine Citation:
PMID:  25492311     Owner:  NLM     Status:  Publisher    
The objectives of this work are the optimization of the codons of xylA gene from Thermus thermophilus to enhance the production of recombinant glucose isomerase (rGI) in P. pastoris and to investigate the effects of feeding strategies on rGI production. Codons of xylA gene from T. thermophilus were optimized, ca. 30 % of the codons were replaced with those with higher frequencies according to the codon usage bias of P. pastoris, codon optimization resulted in a 2.4-fold higher rGI activity. To fine-tune bioreactor performance, fed-batch bioreactor feeding strategies were designed as continuous exponential methanol feeding with pre-calculated feeding rate based on the pre-determined specific growth rate, and fed-batch methanol-stat feeding. Six feeding strategies were designed, as follows: (S1) continuous exponential methanol- and pulse- sorbitol feeding; (S2) continuous exponential methanol- and peptone- feeding; (S3) continuous exponential methanol- and pulse- mannitol feeding; (S4) continuous exponential methanol- and peptone- feeding and pulse-mannitol feeding; (S5) methanol-stat feeding by keeping methanol concentration at 5 g L(-1); and, (S6) methanol-stat feeding by keeping methanol concentration at 5 g L(-1) and pulse-mannitol feeding. The highest cell and rGI activity was attained as 117 g L(-1) at t = 66 h and 32530 U L(-1) at t = 53 h, in strategy-S5. The use of the co-substrate mannitol does not increase the rGI activity in methanol-stat feeding, where 4.1-fold lower rGI activity was obtained in strategy-S6. The overall cell yield on total substrate was determined at t = 53 h as 0.21 g g(-1) in S5 strategy.
Ozge Ata; Erdem Boy; Hande Güneş; Pınar Calık
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-12-10
Journal Detail:
Title:  Bioprocess and biosystems engineering     Volume:  -     ISSN:  1615-7605     ISO Abbreviation:  Bioprocess Biosyst Eng     Publication Date:  2014 Dec 
Date Detail:
Created Date:  2014-12-10     Completed Date:  -     Revised Date:  2014-12-11    
Medline Journal Info:
Nlm Unique ID:  101088505     Medline TA:  Bioprocess Biosyst Eng     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  A factor analysis of the metabolic syndrome components and predicting type 2 diabetes: Result of 10 ...
Next Document:  Feeling Global, Acting Ethically: Global Identification and Fairtrade Consumption.