Document Detail

Cobweb-weaving spiders produce different attachment discs for locomotion and prey capture.
MedLine Citation:
PMID:  23033082     Owner:  NLM     Status:  In-Data-Review    
Spiders' cobwebs ensnare both walking and flying prey. While the scaffolding silk can entangle flying insects, gumfoot silk threads pull walking prey off the ground and into the web. Therefore, scaffolding silk needs to withstand the impact of the prey, whereas gumfoot silk needs to easily detach from the substrate when contacted by prey. Here we show that spiders accomplish these divergent demands by creating attachment discs of two distinct architectures using the same pyriform silk. A 'staple-pin' architecture firmly attaches the scaffolding silk to the substrate and a previously unknown 'dendritic' architecture weakly attaches the gumfoot silk to the substrate. Gumfoot discs adhere weakly, triggering a spring-loaded trap, while the strong adhesion of scaffolding discs compels the scaffolding threads to break instead of detaching. We describe the differences in adhesion for these two architectures using tape-peeling models and design synthetic attachments that reveal important design principles for controlled adhesion.
Vasav Sahni; Jared Harris; Todd A Blackledge; Ali Dhinojwala
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Nature communications     Volume:  3     ISSN:  2041-1723     ISO Abbreviation:  Nat Commun     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-10-03     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101528555     Medline TA:  Nat Commun     Country:  England    
Other Details:
Languages:  eng     Pagination:  1106     Citation Subset:  IM    
Department of Polymer Science, Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325-3909, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Food web expansion and contraction in response to changing environmental conditions.
Next Document:  Monosynaptic inputs to new neurons in the dentate gyrus.