Document Detail

Coassembly of Metal and Titanium Dioxide Nanocrystals Directed by Monolayered Block Copolymer Inverse Micelles for Enhanced Photocatalytic Performance.
MedLine Citation:
PMID:  23015420     Owner:  NLM     Status:  Publisher    
Functional nanostructures of self-assembled block copolymers (BCPs) incorporated with various inorganic nanomaterials have received considerable attention on account of their many potential applications. Here we demonstrate the two-dimensional self-assembly of anisotropic titanium dioxide (TiO(2) ) nanocrystals (NCs) and metal nanoparticles (NPs) directed by monolayered poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) copolymer inverse micelles. The independent position-selective assembly of TiO(2) NCs and silver nanoparticles (AgNPs) preferentially in the intermicelle corona regions and the core of micelles, respectively, for instance, was accomplished by spin-coating a mixture solution of PS-b-P4VP and ex situ synthesized TiO(2) NCs, followed by the reduction of Ag salts coordinated in the cores of micelles into AgNPs. Hydrophobic TiO(2) NCs with a diameter and length of approximately 3 nm and 20-30 nm, respectively, were preferentially sequestered in the intermicelle nonpolar PS corona regions energetically favorable with the minimum entropic packing penalty. Subsequent high-temperature annealing at 550 °C not only effectively removed the block copolymer but also transformed the TiO(2) NCs into connected nanoparticles, thus leading to a two-dimensionally ordered TiO(2) network in which AgNPs were also self-organized. The enhanced photocatalytic activity of the AgNP-decorated TiO(2) networks by approximately 27 and 44 % over that of Ag-free TiO(2) networks and randomly deposited TiO(2) nanoparticles, respectively, was confirmed by the UV degradation property of methylene blue.
Himadri Acharya; Jinwoo Sung; Insung Bae; Taehee Kim; Dong Ha Kim; Cheolmin Park
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-9-27
Journal Detail:
Title:  Chemistry (Weinheim an der Bergstrasse, Germany)     Volume:  -     ISSN:  1521-3765     ISO Abbreviation:  Chemistry     Publication Date:  2012 Sep 
Date Detail:
Created Date:  2012-9-27     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9513783     Medline TA:  Chemistry     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749 (Korea), Fax: (+82) 2-312-5375; Center for Soft Matters, Department of Chemistry, Assam University, Silchar, 788011, Assam (India).
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Crystal Growth, Structure, and Magnetic Properties of a Two-dimensional Triangular Lattice Magnet, C...
Next Document:  Pitch perception.